summaryrefslogtreecommitdiff
path: root/AltOS/doc/altos.html
blob: 421fb2e47000c525ab5490691cfef6ccceb481a6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
<html><head><meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"><title>AltOS</title><meta name="generator" content="DocBook XSL Stylesheets V1.78.1"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="book"><div class="titlepage"><div><div><h1 class="title"><a name="idm46302637457168"></a>AltOS</h1></div><div><h2 class="subtitle">Altos Metrum Operating System</h2></div><div><div class="author"><h3 class="author"><span class="firstname">Keith</span> <span class="surname">Packard</span></h3></div></div><div><p class="copyright">Copyright © 2010 Keith Packard</p></div><div><div class="legalnotice"><a name="idm46302611036384"></a><p>
        This document is released under the terms of the
        <a class="ulink" href="http://creativecommons.org/licenses/by-sa/3.0/" target="_top">
          Creative Commons ShareAlike 3.0
        </a>
        license.
      </p></div></div><div><div class="revhistory"><table style="border-style:solid; width:100%;" summary="Revision History"><tr><th align="left" valign="top" colspan="2"><b>Revision History</b></th></tr><tr><td align="left">Revision 1.1</td><td align="left">05 November 2012</td></tr><tr><td align="left" colspan="2">Portable version</td></tr><tr><td align="left">Revision 0.1</td><td align="left">22 November 2010</td></tr><tr><td align="left" colspan="2">Initial content</td></tr></table></div></div></div><hr></div><div class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span class="chapter"><a href="#idm46302610177888">1. Overview</a></span></dt><dt><span class="chapter"><a href="#idm46302610940496">2. AltOS Porting Layer</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302610938992">1. Low-level CPU operations</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302610937760">1.1. ao_arch_block_interrupts/ao_arch_release_interrupts</a></span></dt><dt><span class="section"><a href="#idm46302610935712">1.2. ao_arch_save_regs, ao_arch_save_stack,
	ao_arch_restore_stack</a></span></dt><dt><span class="section"><a href="#idm46302610933424">1.3. ao_arch_wait_interupt</a></span></dt></dl></dd><dt><span class="section"><a href="#idm46302610930880">2. GPIO operations</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302610929712">2.1. GPIO setup</a></span></dt><dt><span class="section"><a href="#idm46302611109712">2.2. Reading and writing GPIO pins</a></span></dt></dl></dd></dl></dd><dt><span class="chapter"><a href="#idm46302611104464">3. Programming the 8051 with SDCC</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302611102368">1. 8051 memory spaces</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302611100432">1.1. __data</a></span></dt><dt><span class="section"><a href="#idm46302611098256">1.2. __idata</a></span></dt><dt><span class="section"><a href="#idm46302611096816">1.3. __xdata</a></span></dt><dt><span class="section"><a href="#idm46302611095408">1.4. __pdata</a></span></dt><dt><span class="section"><a href="#idm46302611093904">1.5. __code</a></span></dt><dt><span class="section"><a href="#idm46302611092464">1.6. __bit</a></span></dt><dt><span class="section"><a href="#idm46302611090960">1.7. __sfr, __sfr16, __sfr32, __sbit</a></span></dt></dl></dd><dt><span class="section"><a href="#idm46302611089424">2. Function calls on the 8051</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302611087952">2.1. __reentrant functions</a></span></dt><dt><span class="section"><a href="#idm46302611085760">2.2. Non __reentrant functions</a></span></dt><dt><span class="section"><a href="#idm46302611083616">2.3. __interrupt functions</a></span></dt><dt><span class="section"><a href="#idm46302611082048">2.4. __critical functions and statements</a></span></dt></dl></dd></dl></dd><dt><span class="chapter"><a href="#idm46302611079984">4. Task functions</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302611078928">1. ao_add_task</a></span></dt><dt><span class="section"><a href="#idm46302611076672">2. ao_exit</a></span></dt><dt><span class="section"><a href="#idm46302605188160">3. ao_sleep</a></span></dt><dt><span class="section"><a href="#idm46302605184560">4. ao_wakeup</a></span></dt><dt><span class="section"><a href="#idm46302605181568">5. ao_alarm</a></span></dt><dt><span class="section"><a href="#idm46302605178288">6. ao_start_scheduler</a></span></dt><dt><span class="section"><a href="#idm46302605176320">7. ao_clock_init</a></span></dt></dl></dd><dt><span class="chapter"><a href="#idm46302605174224">5. Timer Functions</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605172720">1. ao_time</a></span></dt><dt><span class="section"><a href="#idm46302605170688">2. ao_delay</a></span></dt><dt><span class="section"><a href="#idm46302605168768">3. ao_timer_set_adc_interval</a></span></dt><dt><span class="section"><a href="#idm46302605166640">4. ao_timer_init</a></span></dt></dl></dd><dt><span class="chapter"><a href="#idm46302605164448">6. AltOS Mutexes</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605162576">1. ao_mutex_get</a></span></dt><dt><span class="section"><a href="#idm46302605160736">2. ao_mutex_put</a></span></dt></dl></dd><dt><span class="chapter"><a href="#idm46302605158672">7. DMA engine</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605155232">1. CC1111 DMA Engine</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605154560">1.1. ao_dma_alloc</a></span></dt><dt><span class="section"><a href="#idm46302605152384">1.2. ao_dma_set_transfer</a></span></dt><dt><span class="section"><a href="#idm46302605150112">1.3. ao_dma_start</a></span></dt><dt><span class="section"><a href="#idm46302605148096">1.4. ao_dma_trigger</a></span></dt><dt><span class="section"><a href="#idm46302605146176">1.5. ao_dma_abort</a></span></dt></dl></dd><dt><span class="section"><a href="#idm46302605144032">2. STM32L DMA Engine</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605143360">2.1. ao_dma_alloc</a></span></dt><dt><span class="section"><a href="#idm46302605141360">2.2. ao_dma_set_transfer</a></span></dt><dt><span class="section"><a href="#idm46302605139104">2.3. ao_dma_set_isr</a></span></dt><dt><span class="section"><a href="#idm46302605136944">2.4. ao_dma_start</a></span></dt><dt><span class="section"><a href="#idm46302605134640">2.5. ao_dma_done_transfer</a></span></dt><dt><span class="section"><a href="#idm46302605132656">2.6. ao_dma_abort</a></span></dt></dl></dd></dl></dd><dt><span class="chapter"><a href="#idm46302605130384">8. Stdio interface</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605128880">1. putchar</a></span></dt><dt><span class="section"><a href="#idm46302605126912">2. getchar</a></span></dt><dt><span class="section"><a href="#idm46302605124816">3. flush</a></span></dt><dt><span class="section"><a href="#idm46302605122784">4. ao_add_stdio</a></span></dt></dl></dd><dt><span class="chapter"><a href="#idm46302605118752">9. Command line interface</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605117344">1. ao_cmd_register</a></span></dt><dt><span class="section"><a href="#idm46302605108608">2. ao_cmd_lex</a></span></dt><dt><span class="section"><a href="#idm46302605106528">3. ao_cmd_put16</a></span></dt><dt><span class="section"><a href="#idm46302605104688">4. ao_cmd_put8</a></span></dt><dt><span class="section"><a href="#idm46302605102800">5. ao_cmd_white</a></span></dt><dt><span class="section"><a href="#idm46302605100736">6. ao_cmd_hex</a></span></dt><dt><span class="section"><a href="#idm46302605098688">7. ao_cmd_decimal</a></span></dt><dt><span class="section"><a href="#idm46302605096592">8. ao_match_word</a></span></dt><dt><span class="section"><a href="#idm46302605094512">9. ao_cmd_init</a></span></dt></dl></dd><dt><span class="chapter"><a href="#idm46302605092288">10. USB target device</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605090064">1. ao_usb_flush</a></span></dt><dt><span class="section"><a href="#idm46302605087920">2. ao_usb_putchar</a></span></dt><dt><span class="section"><a href="#idm46302605085744">3. ao_usb_pollchar</a></span></dt><dt><span class="section"><a href="#idm46302605083600">4. ao_usb_getchar</a></span></dt><dt><span class="section"><a href="#idm46302605081584">5. ao_usb_disable</a></span></dt><dt><span class="section"><a href="#idm46302605078752">6. ao_usb_enable</a></span></dt><dt><span class="section"><a href="#idm46302605076640">7. ao_usb_init</a></span></dt></dl></dd><dt><span class="chapter"><a href="#idm46302605074416">11. Serial peripherals</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605072400">1. ao_serial_getchar</a></span></dt><dt><span class="section"><a href="#idm46302605070368">2. ao_serial_putchar</a></span></dt><dt><span class="section"><a href="#idm46302605068400">3. ao_serial_drain</a></span></dt><dt><span class="section"><a href="#idm46302605066400">4. ao_serial_set_speed</a></span></dt><dt><span class="section"><a href="#idm46302605064368">5. ao_serial_init</a></span></dt></dl></dd><dt><span class="chapter"><a href="#idm46302605062176">12. CC1111 Radio peripheral</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605061504">1. Radio Introduction</a></span></dt><dt><span class="section"><a href="#idm46302605054896">2. ao_radio_set_telemetry</a></span></dt><dt><span class="section"><a href="#idm46302605052800">3. ao_radio_set_packet</a></span></dt><dt><span class="section"><a href="#idm46302605050704">4. ao_radio_set_rdf</a></span></dt><dt><span class="section"><a href="#idm46302605048576">5. ao_radio_idle</a></span></dt><dt><span class="section"><a href="#idm46302605046640">6. ao_radio_get</a></span></dt><dt><span class="section"><a href="#idm46302605044720">7. ao_radio_put</a></span></dt><dt><span class="section"><a href="#idm46302605042944">8. ao_radio_abort</a></span></dt><dt><span class="section"><a href="#idm46302605040992">9. Radio Telemetry</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605039728">9.1. ao_radio_send</a></span></dt><dt><span class="section"><a href="#idm46302605037568">9.2. ao_radio_recv</a></span></dt></dl></dd><dt><span class="section"><a href="#idm46302605035168">10. Radio Direction Finding</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605034048">10.1. ao_radio_rdf</a></span></dt></dl></dd><dt><span class="section"><a href="#idm46302605032016">11. Radio Packet Mode</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605030736">11.1. ao_packet_putchar</a></span></dt><dt><span class="section"><a href="#idm46302605028624">11.2. ao_packet_pollchar</a></span></dt><dt><span class="section"><a href="#idm46302605026656">11.3. ao_packet_slave_start</a></span></dt><dt><span class="section"><a href="#idm46302605024768">11.4. ao_packet_slave_stop</a></span></dt><dt><span class="section"><a href="#idm46302605022912">11.5. ao_packet_slave_init</a></span></dt><dt><span class="section"><a href="#idm46302605020944">11.6. ao_packet_master_init</a></span></dt></dl></dd></dl></dd></dl></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="idm46302610177888"></a>Chapter 1. Overview</h1></div></div></div><p>
      AltOS is a operating system built for a variety of
      microcontrollers used in Altus Metrum devices. It has a simple
      porting layer for each CPU while providing a convenient
      operating enviroment for the developer. AltOS currently
      supports three different CPUs:
      </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p>
	    STM32L series from ST Microelectronics. This ARM Cortex-M3
	    based microcontroller offers low power consumption and a
	    wide variety of built-in peripherals. Altus Metrum uses
	    this in the TeleMega, MegaDongle and TeleLCO projects.
	  </p></li><li class="listitem"><p>
	    CC1111 from Texas Instruments. This device includes a
	    fabulous 10mW digital RF transceiver along with an
	    8051-compatible processor core and a range of
	    peripherals. This is used in the TeleMetrum, TeleMini,
	    TeleDongle and TeleFire projects which share the need for
	    a small microcontroller and an RF interface.
	  </p></li><li class="listitem"><p>
	    ATmega32U4 from Atmel. This 8-bit AVR microcontroller is
	    one of the many used to create Arduino boards. The 32U4
	    includes a USB interface, making it easy to connect to
	    other computers. Altus Metrum used this in prototypes of
	    the TeleScience and TelePyro boards; those have been
	    switched to the STM32L which is more capable and cheaper.
	  </p></li></ul></div><p>
      Among the features of AltOS are:
      </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p>Multi-tasking. While microcontrollers often don't
	  provide separate address spaces, it's often easier to write
	  code that operates in separate threads instead of tying
	  everything into one giant event loop.
	  </p></li><li class="listitem"><p>Non-preemptive. This increases latency for thread
	  switching but reduces the number of places where context
	  switching can occur. It also simplifies the operating system
	  design somewhat. Nothing in the target system (rocket flight
	  control) has tight timing requirements, and so this seems like
	  a reasonable compromise.
	  </p></li><li class="listitem"><p>Sleep/wakeup scheduling. Taken directly from ancient
	  Unix designs, these two provide the fundemental scheduling
	  primitive within AltOS.
	  </p></li><li class="listitem"><p>Mutexes. As a locking primitive, mutexes are easier to
	  use than semaphores, at least in my experience.
	  </p></li><li class="listitem"><p>Timers. Tasks can set an alarm which will abort any
	  pending sleep, allowing operations to time-out instead of
	  blocking forever.
	  </p></li></ul></div><p>
    </p><p>
      The device drivers and other subsystems in AltOS are
      conventionally enabled by invoking their _init() function from
      the 'main' function before that calls
      ao_start_scheduler(). These functions initialize the pin
      assignments, add various commands to the command processor and
      may add tasks to the scheduler to handle the device. A typical
      main program, thus, looks like:
      </p><pre class="programlisting">
	void
	main(void)
	{
	        ao_clock_init();

	        /* Turn on the LED until the system is stable */
	        ao_led_init(LEDS_AVAILABLE);
	        ao_led_on(AO_LED_RED);
	        ao_timer_init();
	        ao_cmd_init();
	        ao_usb_init();
	        ao_monitor_init(AO_LED_GREEN, TRUE);
	        ao_rssi_init(AO_LED_RED);
	        ao_radio_init();
	        ao_packet_slave_init();
	        ao_packet_master_init();
	        #if HAS_DBG
	        ao_dbg_init();
	        #endif
	        ao_config_init();
	        ao_start_scheduler();
	}
      </pre><p>
      As you can see, a long sequence of subsystems are initialized
      and then the scheduler is started.
    </p></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="idm46302610940496"></a>Chapter 2. AltOS Porting Layer</h1></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span class="section"><a href="#idm46302610938992">1. Low-level CPU operations</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302610937760">1.1. ao_arch_block_interrupts/ao_arch_release_interrupts</a></span></dt><dt><span class="section"><a href="#idm46302610935712">1.2. ao_arch_save_regs, ao_arch_save_stack,
	ao_arch_restore_stack</a></span></dt><dt><span class="section"><a href="#idm46302610933424">1.3. ao_arch_wait_interupt</a></span></dt></dl></dd><dt><span class="section"><a href="#idm46302610930880">2. GPIO operations</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302610929712">2.1. GPIO setup</a></span></dt><dt><span class="section"><a href="#idm46302611109712">2.2. Reading and writing GPIO pins</a></span></dt></dl></dd></dl></div><p>
      AltOS provides a CPU-independent interface to various common
      microcontroller subsystems, including GPIO pins, interrupts,
      SPI, I2C, USB and asynchronous serial interfaces. By making
      these CPU-independent, device drivers, generic OS and
      application code can all be written that work on any supported
      CPU. Many of the architecture abstraction interfaces are
      prefixed with ao_arch.
    </p><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302610938992"></a>1. Low-level CPU operations</h2></div></div></div><p>
	These primitive operations provide the abstraction needed to
	run the multi-tasking framework while providing reliable
	interrupt delivery.
      </p><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302610937760"></a>1.1. ao_arch_block_interrupts/ao_arch_release_interrupts</h3></div></div></div><pre class="programlisting">
	  static inline void
	  ao_arch_block_interrupts(void);
	  
	  static inline void
	  ao_arch_release_interrupts(void);
	</pre><p>
	  These disable/enable interrupt delivery, they may not
	  discard any interrupts. Use these for sections of code that
	  must be atomic with respect to any code run from an
	  interrupt handler.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302610935712"></a>1.2. ao_arch_save_regs, ao_arch_save_stack,
	ao_arch_restore_stack</h3></div></div></div><pre class="programlisting">
	  static inline void
	  ao_arch_save_regs(void);

	  static inline void
	  ao_arch_save_stack(void);

	  static inline void
	  ao_arch_restore_stack(void);
	</pre><p>
	  These provide all of the support needed to switch between
	  tasks.. ao_arch_save_regs must save all CPU registers to the
	  current stack, including the interrupt enable
	  state. ao_arch_save_stack records the current stack location
	  in the current ao_task structure. ao_arch_restore_stack
	  switches back to the saved stack, restores all registers and
	  branches to the saved return address.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302610933424"></a>1.3. ao_arch_wait_interupt</h3></div></div></div><pre class="programlisting">
	  #define ao_arch_wait_interrupt()
	</pre><p>
	  This stops the CPU, leaving clocks and interrupts
	  enabled. When an interrupt is received, this must wake up
	  and handle the interrupt. ao_arch_wait_interrupt is entered
	  with interrupts disabled to ensure that there is no gap
	  between determining that no task wants to run and idling the
	  CPU. It must sleep the CPU, process interrupts and then
	  disable interrupts again. If the CPU doesn't have any
	  reduced power mode, this must at the least allow pending
	  interrupts to be processed.
	</p></div></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302610930880"></a>2. GPIO operations</h2></div></div></div><p>
	These functions provide an abstract interface to configure and
	manipulate GPIO pins.
      </p><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302610929712"></a>2.1. GPIO setup</h3></div></div></div><p>
	  These macros may be invoked at system initialization time to
	  configure pins as needed for system operation. One tricky
	  aspect is that some chips provide direct access to specific
	  GPIO pins while others only provide access to a whole
	  register full of pins. To support this, the GPIO macros
	  provide both port+bit and pin arguments. Simply define the
	  arguments needed for the target platform and leave the
	  others undefined.
	</p><div class="section"><div class="titlepage"><div><div><h4 class="title"><a name="idm46302610927744"></a>2.1.1. ao_enable_output</h4></div></div></div><pre class="programlisting">
	    #define ao_enable_output(port, bit, pin, value)
	  </pre><p>
	    Set the specified port+bit (also called 'pin') for output,
	    initializing to the specified value. The macro must avoid
	    driving the pin with the opposite value if at all
	    possible.
	  </p></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a name="idm46302611115152"></a>2.1.2. ao_enable_input</h4></div></div></div><pre class="programlisting">
	    #define ao_enable_input(port, bit, mode)
	  </pre><p>
	    Sets the specified port/bit to be an input pin. 'mode' is
	    a combination of one or more of the following. Note that
	    some platforms may not support the desired mode. In that
	    case, the value will not be defined so that the program
	    will fail to compile.
	    </p><div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"><p>
		AO_EXTI_MODE_PULL_UP. Apply a pull-up to the pin; a
		disconnected pin will read as 1.
</p></li><li class="listitem"><p>
		AO_EXTI_MODE_PULL_DOWN. Apply a pull-down to the pin;
		a disconnected pin will read as 0.
</p></li><li class="listitem"><p>
		0. Don't apply either a pull-up or pull-down. A
		disconnected pin will read an undetermined value.
</p></li></ul></div><p>
	  </p></div></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302611109712"></a>2.2. Reading and writing GPIO pins</h3></div></div></div><p>
	  These macros read and write individual GPIO pins.
	</p><div class="section"><div class="titlepage"><div><div><h4 class="title"><a name="idm46302611108640"></a>2.2.1. ao_gpio_set</h4></div></div></div><pre class="programlisting">
	    #define ao_gpio_set(port, bit, pin, value)
	  </pre><p>
	    Sets the specified port/bit or pin to the indicated value
	  </p></div><div class="section"><div class="titlepage"><div><div><h4 class="title"><a name="idm46302611106800"></a>2.2.2. ao_gpio_get</h4></div></div></div><pre class="programlisting">
	    #define ao_gpio_get(port, bit, pin)
	  </pre><p>
	    Returns either 1 or 0 depending on whether the input to
	    the pin is high or low.
	  </p></div></div></div></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="idm46302611104464"></a>Chapter 3. Programming the 8051 with SDCC</h1></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span class="section"><a href="#idm46302611102368">1. 8051 memory spaces</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302611100432">1.1. __data</a></span></dt><dt><span class="section"><a href="#idm46302611098256">1.2. __idata</a></span></dt><dt><span class="section"><a href="#idm46302611096816">1.3. __xdata</a></span></dt><dt><span class="section"><a href="#idm46302611095408">1.4. __pdata</a></span></dt><dt><span class="section"><a href="#idm46302611093904">1.5. __code</a></span></dt><dt><span class="section"><a href="#idm46302611092464">1.6. __bit</a></span></dt><dt><span class="section"><a href="#idm46302611090960">1.7. __sfr, __sfr16, __sfr32, __sbit</a></span></dt></dl></dd><dt><span class="section"><a href="#idm46302611089424">2. Function calls on the 8051</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302611087952">2.1. __reentrant functions</a></span></dt><dt><span class="section"><a href="#idm46302611085760">2.2. Non __reentrant functions</a></span></dt><dt><span class="section"><a href="#idm46302611083616">2.3. __interrupt functions</a></span></dt><dt><span class="section"><a href="#idm46302611082048">2.4. __critical functions and statements</a></span></dt></dl></dd></dl></div><p>
      The 8051 is a primitive 8-bit processor, designed in the mists
      of time in as few transistors as possible. The architecture is
      highly irregular and includes several separate memory
      spaces. Furthermore, accessing stack variables is slow, and the
      stack itself is of limited size. While SDCC papers over the
      instruction set, it is not completely able to hide the memory
      architecture from the application designer.
    </p><p>
      When built on other architectures, the various SDCC-specific
      symbols are #defined as empty strings so they don't affect the compiler.
    </p><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302611102368"></a>1. 8051 memory spaces</h2></div></div></div><p>
	The __data/__xdata/__code memory spaces below were completely
	separate in the original 8051 design. In the cc1111, this
	isn't true&#8212;they all live in a single unified 64kB address
	space, and so it's possible to convert any address into a
	unique 16-bit address. SDCC doesn't know this, and so a
	'global' address to SDCC consumes 3 bytes of memory, 1 byte as
	a tag indicating the memory space and 2 bytes of offset within
	that space. AltOS avoids these 3-byte addresses as much as
	possible; using them involves a function call per byte
	access. The result is that nearly every variable declaration
	is decorated with a memory space identifier which clutters the
	code but makes the resulting code far smaller and more
	efficient.
      </p><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302611100432"></a>1.1. __data</h3></div></div></div><p>
	  The 8051 can directly address these 128 bytes of
	  memory. This makes them precious so they should be
	  reserved for frequently addressed values. Oh, just to
	  confuse things further, the 8 general registers in the
	  CPU are actually stored in this memory space. There are
	  magic instructions to 'bank switch' among 4 banks of
	  these registers located at 0x00 - 0x1F. AltOS uses only
	  the first bank at 0x00 - 0x07, leaving the other 24
	  bytes available for other data.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302611098256"></a>1.2. __idata</h3></div></div></div><p>
	  There are an additional 128 bytes of internal memory
	  that share the same address space as __data but which
	  cannot be directly addressed. The stack normally
	  occupies this space and so AltOS doesn't place any
	  static storage here.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302611096816"></a>1.3. __xdata</h3></div></div></div><p>
	  This is additional general memory accessed through a
	  single 16-bit address register. The CC1111F32 has 32kB
	  of memory available here. Most program data should live
	  in this memory space.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302611095408"></a>1.4. __pdata</h3></div></div></div><p>
	  This is an alias for the first 256 bytes of __xdata
	  memory, but uses a shorter addressing mode with
	  single global 8-bit value for the high 8 bits of the
	  address and any of several 8-bit registers for the low 8
	  bits. AltOS uses a few bits of this memory, it should
	  probably use more.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302611093904"></a>1.5. __code</h3></div></div></div><p>
	  All executable code must live in this address space, but
	  you can stick read-only data here too. It is addressed
	  using the 16-bit address register and special 'code'
	  access opcodes. Anything read-only should live in this space.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302611092464"></a>1.6. __bit</h3></div></div></div><p>
	  The 8051 has 128 bits of bit-addressible memory that
	  lives in the __data segment from 0x20 through
	  0x2f. Special instructions access these bits
	  in a single atomic operation. This isn't so much a
	  separate address space as a special addressing mode for
	  a few bytes in the __data segment.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302611090960"></a>1.7. __sfr, __sfr16, __sfr32, __sbit</h3></div></div></div><p>
	  Access to physical registers in the device use this mode
	  which declares the variable name, its type and the
	  address it lives at. No memory is allocated for these
	  variables.
	</p></div></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302611089424"></a>2. Function calls on the 8051</h2></div></div></div><p>
	Because stack addressing is expensive, and stack space
	limited, the default function call declaration in SDCC
	allocates all parameters and local variables in static global
	memory. Just like fortran. This makes these functions
	non-reentrant, and also consume space for parameters and
	locals even when they are not running. The benefit is smaller
	code and faster execution.
      </p><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302611087952"></a>2.1. __reentrant functions</h3></div></div></div><p>
	  All functions which are re-entrant, either due to recursion
	  or due to a potential context switch while executing, should
	  be marked as __reentrant so that their parameters and local
	  variables get allocated on the stack. This ensures that
	  these values are not overwritten by another invocation of
	  the function.
	</p><p>
	  Functions which use significant amounts of space for
	  arguments and/or local variables and which are not often
	  invoked can also be marked as __reentrant. The resulting
	  code will be larger, but the savings in memory are
	  frequently worthwhile.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302611085760"></a>2.2. Non __reentrant functions</h3></div></div></div><p>
	  All parameters and locals in non-reentrant functions can
	  have data space decoration so that they are allocated in
	  __xdata, __pdata or __data space as desired. This can avoid
	  consuming __data space for infrequently used variables in
	  frequently used functions.
	</p><p>
	  All library functions called by SDCC, including functions
	  for multiplying and dividing large data types, are
	  non-reentrant. Because of this, interrupt handlers must not
	  invoke any library functions, including the multiply and
	  divide code.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302611083616"></a>2.3. __interrupt functions</h3></div></div></div><p>
	  Interrupt functions are declared with with an __interrupt
	  decoration that includes the interrupt number. SDCC saves
	  and restores all of the registers in these functions and
	  uses the 'reti' instruction at the end so that they operate
	  as stand-alone interrupt handlers. Interrupt functions may
	  call the ao_wakeup function to wake AltOS tasks.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302611082048"></a>2.4. __critical functions and statements</h3></div></div></div><p>
	  SDCC has built-in support for suspending interrupts during
	  critical code. Functions marked as __critical will have
	  interrupts suspended for the whole period of
	  execution. Individual statements may also be marked as
	  __critical which blocks interrupts during the execution of
	  that statement. Keeping critical sections as short as
	  possible is key to ensuring that interrupts are handled as
	  quickly as possible. AltOS doesn't use this form in shared
	  code as other compilers wouldn't know what to do. Use
	  ao_arch_block_interrupts and ao_arch_release_interrupts instead.
	</p></div></div></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="idm46302611079984"></a>Chapter 4. Task functions</h1></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span class="section"><a href="#idm46302611078928">1. ao_add_task</a></span></dt><dt><span class="section"><a href="#idm46302611076672">2. ao_exit</a></span></dt><dt><span class="section"><a href="#idm46302605188160">3. ao_sleep</a></span></dt><dt><span class="section"><a href="#idm46302605184560">4. ao_wakeup</a></span></dt><dt><span class="section"><a href="#idm46302605181568">5. ao_alarm</a></span></dt><dt><span class="section"><a href="#idm46302605178288">6. ao_start_scheduler</a></span></dt><dt><span class="section"><a href="#idm46302605176320">7. ao_clock_init</a></span></dt></dl></div><p>
      This chapter documents how to create, destroy and schedule AltOS tasks.
    </p><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302611078928"></a>1. ao_add_task</h2></div></div></div><pre class="programlisting">
	void
	ao_add_task(__xdata struct ao_task * task,
	            void (*start)(void),
	            __code char *name);
      </pre><p>
	This initializes the statically allocated task structure,
	assigns a name to it (not used for anything but the task
	display), and the start address. It does not switch to the
	new task. 'start' must not ever return; there is no place
	to return to.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302611076672"></a>2. ao_exit</h2></div></div></div><pre class="programlisting">
	void
	ao_exit(void)
      </pre><p>
	This terminates the current task.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605188160"></a>3. ao_sleep</h2></div></div></div><pre class="programlisting">
	void
	ao_sleep(__xdata void *wchan)
      </pre><p>
	This suspends the current task until 'wchan' is signaled
	by ao_wakeup, or until the timeout, set by ao_alarm,
	fires. If 'wchan' is signaled, ao_sleep returns 0, otherwise
	it returns 1. This is the only way to switch to another task.
      </p><p>
	Because ao_wakeup wakes every task waiting on a particular
	location, ao_sleep should be used in a loop that first checks
	the desired condition, blocks in ao_sleep and then rechecks
	until the condition is satisfied. If the location may be
	signaled from an interrupt handler, the code will need to
	block interrupts around the block of code. Here's a complete
	example:
	</p><pre class="programlisting">
	  ao_arch_block_interrupts();
	  while (!ao_radio_done)
	          ao_sleep(&amp;ao_radio_done);
	  ao_arch_release_interrupts();
	</pre><p>
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605184560"></a>4. ao_wakeup</h2></div></div></div><pre class="programlisting">
	void
	ao_wakeup(__xdata void *wchan)
      </pre><p>
	Wake all tasks blocked on 'wchan'. This makes them
	available to be run again, but does not actually switch
	to another task. Here's an example of using this:
	</p><pre class="programlisting">
	  if (RFIF &amp; RFIF_IM_DONE) {
	          ao_radio_done = 1;
	          ao_wakeup(&amp;ao_radio_done);
	          RFIF &amp;= ~RFIF_IM_DONE;
	  }
	</pre><p>
	Note that this need not block interrupts as the ao_sleep block
	can only be run from normal mode, and so this sequence can
	never be interrupted with execution of the other sequence.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605181568"></a>5. ao_alarm</h2></div></div></div><pre class="programlisting">
	void
	ao_alarm(uint16_t delay);

	void
	ao_clear_alarm(void);
      </pre><p>
	Schedules an alarm to fire in at least 'delay' ticks. If the
	task is asleep when the alarm fires, it will wakeup and
	ao_sleep will return 1. ao_clear_alarm resets any pending
	alarm so that it doesn't fire at some arbitrary point in the
	future.
	</p><pre class="programlisting">
	  ao_alarm(ao_packet_master_delay);
	  ao_arch_block_interrupts();
	  while (!ao_radio_dma_done)
	          if (ao_sleep(&amp;ao_radio_dma_done) != 0)
	                  ao_radio_abort();
	  ao_arch_release_interrupts();
	  ao_clear_alarm();
	</pre><p>
	In this example, a timeout is set before waiting for
	incoming radio data. If no data is received before the
	timeout fires, ao_sleep will return 1 and then this code
	will abort the radio receive operation.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605178288"></a>6. ao_start_scheduler</h2></div></div></div><pre class="programlisting">
	void
	ao_start_scheduler(void);
      </pre><p>
	This is called from 'main' when the system is all
	initialized and ready to run. It will not return.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605176320"></a>7. ao_clock_init</h2></div></div></div><pre class="programlisting">
	void
	ao_clock_init(void);
      </pre><p>
	This initializes the main CPU clock and switches to it.
      </p></div></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="idm46302605174224"></a>Chapter 5. Timer Functions</h1></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span class="section"><a href="#idm46302605172720">1. ao_time</a></span></dt><dt><span class="section"><a href="#idm46302605170688">2. ao_delay</a></span></dt><dt><span class="section"><a href="#idm46302605168768">3. ao_timer_set_adc_interval</a></span></dt><dt><span class="section"><a href="#idm46302605166640">4. ao_timer_init</a></span></dt></dl></div><p>
      AltOS sets up one of the CPU timers to run at 100Hz and
      exposes this tick as the fundemental unit of time. At each
      interrupt, AltOS increments the counter, and schedules any tasks
      waiting for that time to pass, then fires off the sensors to
      collect current data readings. Doing this from the ISR ensures
      that the values are sampled at a regular rate, independent
      of any scheduling jitter.
    </p><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605172720"></a>1. ao_time</h2></div></div></div><pre class="programlisting">
	uint16_t
	ao_time(void)
      </pre><p>
	Returns the current system tick count. Note that this is
	only a 16 bit value, and so it wraps every 655.36 seconds.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605170688"></a>2. ao_delay</h2></div></div></div><pre class="programlisting">
	void
	ao_delay(uint16_t ticks);
      </pre><p>
	Suspend the current task for at least 'ticks' clock units.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605168768"></a>3. ao_timer_set_adc_interval</h2></div></div></div><pre class="programlisting">
	void
	ao_timer_set_adc_interval(uint8_t interval);
      </pre><p>
	This sets the number of ticks between ADC samples. If set
	to 0, no ADC samples are generated. AltOS uses this to
	slow down the ADC sampling rate to save power.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605166640"></a>4. ao_timer_init</h2></div></div></div><pre class="programlisting">
	void
	ao_timer_init(void)
      </pre><p>
	This turns on the 100Hz tick. It is required for any of the
	time-based functions to work. It should be called by 'main'
	before ao_start_scheduler.
      </p></div></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="idm46302605164448"></a>Chapter 6. AltOS Mutexes</h1></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span class="section"><a href="#idm46302605162576">1. ao_mutex_get</a></span></dt><dt><span class="section"><a href="#idm46302605160736">2. ao_mutex_put</a></span></dt></dl></div><p>
      AltOS provides mutexes as a basic synchronization primitive. Each
      mutexes is simply a byte of memory which holds 0 when the mutex
      is free or the task id of the owning task when the mutex is
      owned. Mutex calls are checked&#8212;attempting to acquire a mutex
      already held by the current task or releasing a mutex not held
      by the current task will both cause a panic.
    </p><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605162576"></a>1. ao_mutex_get</h2></div></div></div><pre class="programlisting">
	void
	ao_mutex_get(__xdata uint8_t *mutex);
      </pre><p>
	Acquires the specified mutex, blocking if the mutex is
	owned by another task.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605160736"></a>2. ao_mutex_put</h2></div></div></div><pre class="programlisting">
	void
	ao_mutex_put(__xdata uint8_t *mutex);
      </pre><p>
	Releases the specified mutex, waking up all tasks waiting
	for it.
      </p></div></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="idm46302605158672"></a>Chapter 7. DMA engine</h1></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span class="section"><a href="#idm46302605155232">1. CC1111 DMA Engine</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605154560">1.1. ao_dma_alloc</a></span></dt><dt><span class="section"><a href="#idm46302605152384">1.2. ao_dma_set_transfer</a></span></dt><dt><span class="section"><a href="#idm46302605150112">1.3. ao_dma_start</a></span></dt><dt><span class="section"><a href="#idm46302605148096">1.4. ao_dma_trigger</a></span></dt><dt><span class="section"><a href="#idm46302605146176">1.5. ao_dma_abort</a></span></dt></dl></dd><dt><span class="section"><a href="#idm46302605144032">2. STM32L DMA Engine</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605143360">2.1. ao_dma_alloc</a></span></dt><dt><span class="section"><a href="#idm46302605141360">2.2. ao_dma_set_transfer</a></span></dt><dt><span class="section"><a href="#idm46302605139104">2.3. ao_dma_set_isr</a></span></dt><dt><span class="section"><a href="#idm46302605136944">2.4. ao_dma_start</a></span></dt><dt><span class="section"><a href="#idm46302605134640">2.5. ao_dma_done_transfer</a></span></dt><dt><span class="section"><a href="#idm46302605132656">2.6. ao_dma_abort</a></span></dt></dl></dd></dl></div><p>
      The CC1111 and STM32L both contain a useful bit of extra
      hardware in the form of a number of programmable DMA
      engines. They can be configured to copy data in memory, or
      between memory and devices (or even between two devices). AltOS
      exposes a general interface to this hardware and uses it to
      handle both internal and external devices.
    </p><p>
      Because the CC1111 and STM32L DMA engines are different, the
      interface to them is also different. As the DMA engines are
      currently used to implement platform-specific drivers, this
      isn't yet a problem.
    </p><p>
      Code using a DMA engine should allocate one at startup
      time. There is no provision to free them, and if you run out,
      AltOS will simply panic.
    </p><p>
      During operation, the DMA engine is initialized with the
      transfer parameters. Then it is started, at which point it
      awaits a suitable event to start copying data. When copying data
      from hardware to memory, that trigger event is supplied by the
      hardware device. When copying data from memory to hardware, the
      transfer is usually initiated by software.
    </p><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605155232"></a>1. CC1111 DMA Engine</h2></div></div></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605154560"></a>1.1. ao_dma_alloc</h3></div></div></div><pre class="programlisting">
	  uint8_t
	  ao_dma_alloc(__xdata uint8_t *done)
	</pre><p>
	  Allocate a DMA engine, returning the identifier.  'done' is
	  cleared when the DMA is started, and then receives the
	  AO_DMA_DONE bit on a successful transfer or the
	  AO_DMA_ABORTED bit if ao_dma_abort was called. Note that it
	  is possible to get both bits if the transfer was aborted
	  after it had finished.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605152384"></a>1.2. ao_dma_set_transfer</h3></div></div></div><pre class="programlisting">
	  void
	  ao_dma_set_transfer(uint8_t id,
	  void __xdata *srcaddr,
	  void __xdata *dstaddr,
	  uint16_t count,
	  uint8_t cfg0,
	  uint8_t cfg1)
	</pre><p>
	  Initializes the specified dma engine to copy data
	  from 'srcaddr' to 'dstaddr' for 'count' units. cfg0 and
	  cfg1 are values directly out of the CC1111 documentation
	  and tell the DMA engine what the transfer unit size,
	  direction and step are.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605150112"></a>1.3. ao_dma_start</h3></div></div></div><pre class="programlisting">
	  void
	  ao_dma_start(uint8_t id);
	</pre><p>
	  Arm the specified DMA engine and await a signal from
	  either hardware or software to start transferring data.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605148096"></a>1.4. ao_dma_trigger</h3></div></div></div><pre class="programlisting">
	  void
	  ao_dma_trigger(uint8_t id)
	</pre><p>
	  Trigger the specified DMA engine to start copying data.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605146176"></a>1.5. ao_dma_abort</h3></div></div></div><pre class="programlisting">
	  void
	  ao_dma_abort(uint8_t id)
	</pre><p>
	  Terminate any in-progress DMA transaction, marking its
	  'done' variable with the AO_DMA_ABORTED bit.
	</p></div></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605144032"></a>2. STM32L DMA Engine</h2></div></div></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605143360"></a>2.1. ao_dma_alloc</h3></div></div></div><pre class="programlisting">
	  uint8_t ao_dma_done[];

	  void
	  ao_dma_alloc(uint8_t index);
	</pre><p>
	  Reserve a DMA engine for exclusive use by one
	  driver.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605141360"></a>2.2. ao_dma_set_transfer</h3></div></div></div><pre class="programlisting">
	  void
	  ao_dma_set_transfer(uint8_t id,
	  void *peripheral,
	  void *memory,
	  uint16_t count,
	  uint32_t ccr);
	</pre><p>
	  Initializes the specified dma engine to copy data between
	  'peripheral' and 'memory' for 'count' units. 'ccr' is a
	  value directly out of the STM32L documentation and tells the
	  DMA engine what the transfer unit size, direction and step
	  are.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605139104"></a>2.3. ao_dma_set_isr</h3></div></div></div><pre class="programlisting">
	  void
	  ao_dma_set_isr(uint8_t index, void (*isr)(int))
	</pre><p>
	  This sets a function to be called when the DMA transfer
	  completes in lieu of setting the ao_dma_done bits. Use this
	  when some work needs to be done when the DMA finishes that
	  cannot wait until user space resumes.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605136944"></a>2.4. ao_dma_start</h3></div></div></div><pre class="programlisting">
	  void
	  ao_dma_start(uint8_t id);
	</pre><p>
	  Arm the specified DMA engine and await a signal from either
	  hardware or software to start transferring data.
	  'ao_dma_done[index]' is cleared when the DMA is started, and
	  then receives the AO_DMA_DONE bit on a successful transfer
	  or the AO_DMA_ABORTED bit if ao_dma_abort was called. Note
	  that it is possible to get both bits if the transfer was
	  aborted after it had finished.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605134640"></a>2.5. ao_dma_done_transfer</h3></div></div></div><pre class="programlisting">
	  void
	  ao_dma_done_transfer(uint8_t id);
	</pre><p>
	  Signals that a specific DMA engine is done being used. This
	  allows multiple drivers to use the same DMA engine safely.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605132656"></a>2.6. ao_dma_abort</h3></div></div></div><pre class="programlisting">
	  void
	  ao_dma_abort(uint8_t id)
	</pre><p>
	  Terminate any in-progress DMA transaction, marking its
	  'done' variable with the AO_DMA_ABORTED bit.
	</p></div></div></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="idm46302605130384"></a>Chapter 8. Stdio interface</h1></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span class="section"><a href="#idm46302605128880">1. putchar</a></span></dt><dt><span class="section"><a href="#idm46302605126912">2. getchar</a></span></dt><dt><span class="section"><a href="#idm46302605124816">3. flush</a></span></dt><dt><span class="section"><a href="#idm46302605122784">4. ao_add_stdio</a></span></dt></dl></div><p>
      AltOS offers a stdio interface over USB, serial and the RF
      packet link. This provides for control of the device locally or
      remotely. This is hooked up to the stdio functions by providing
      the standard putchar/getchar/flush functions. These
      automatically multiplex the available communication channels;
      output is always delivered to the channel which provided the
      most recent input.
    </p><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605128880"></a>1. putchar</h2></div></div></div><pre class="programlisting">
	void
	putchar(char c)
      </pre><p>
	Delivers a single character to the current console
	device.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605126912"></a>2. getchar</h2></div></div></div><pre class="programlisting">
	char
	getchar(void)
      </pre><p>
	Reads a single character from any of the available
	console devices. The current console device is set to
	that which delivered this character. This blocks until
	a character is available.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605124816"></a>3. flush</h2></div></div></div><pre class="programlisting">
	void
	flush(void)
      </pre><p>
	Flushes the current console device output buffer. Any
	pending characters will be delivered to the target device.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605122784"></a>4. ao_add_stdio</h2></div></div></div><pre class="programlisting">
	void
	ao_add_stdio(char (*pollchar)(void),
	                   void (*putchar)(char),
	                   void (*flush)(void))
      </pre><p>
	This adds another console device to the available
	list.
      </p><p>
	'pollchar' returns either an available character or
	AO_READ_AGAIN if none is available. Significantly, it does
	not block. The device driver must set 'ao_stdin_ready' to
	1 and call ao_wakeup(&amp;ao_stdin_ready) when it receives
	input to tell getchar that more data is available, at
	which point 'pollchar' will be called again.
      </p><p>
	'putchar' queues a character for output, flushing if the output buffer is
	full. It may block in this case.
      </p><p>
	'flush' forces the output buffer to be flushed. It may
	block until the buffer is delivered, but it is not
	required to do so.
      </p></div></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="idm46302605118752"></a>Chapter 9. Command line interface</h1></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span class="section"><a href="#idm46302605117344">1. ao_cmd_register</a></span></dt><dt><span class="section"><a href="#idm46302605108608">2. ao_cmd_lex</a></span></dt><dt><span class="section"><a href="#idm46302605106528">3. ao_cmd_put16</a></span></dt><dt><span class="section"><a href="#idm46302605104688">4. ao_cmd_put8</a></span></dt><dt><span class="section"><a href="#idm46302605102800">5. ao_cmd_white</a></span></dt><dt><span class="section"><a href="#idm46302605100736">6. ao_cmd_hex</a></span></dt><dt><span class="section"><a href="#idm46302605098688">7. ao_cmd_decimal</a></span></dt><dt><span class="section"><a href="#idm46302605096592">8. ao_match_word</a></span></dt><dt><span class="section"><a href="#idm46302605094512">9. ao_cmd_init</a></span></dt></dl></div><p>
      AltOS includes a simple command line parser which is hooked up
      to the stdio interfaces permitting remote control of the device
      over USB, serial or the RF link as desired. Each command uses a
      single character to invoke it, the remaining characters on the
      line are available as parameters to the command.
    </p><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605117344"></a>1. ao_cmd_register</h2></div></div></div><pre class="programlisting">
	void
	ao_cmd_register(__code struct ao_cmds *cmds)
      </pre><p>
	This registers a set of commands with the command
	parser. There is a fixed limit on the number of command
	sets, the system will panic if too many are registered.
	Each command is defined by a struct ao_cmds entry:
	</p><pre class="programlisting">
	  struct ao_cmds {
	          char		cmd;
	          void		(*func)(void);
	          const char	*help;
	  };
	</pre><p>
	'cmd' is the character naming the command. 'func' is the
	function to invoke and 'help' is a string displayed by the
	'?' command. Syntax errors found while executing 'func'
	should be indicated by modifying the global ao_cmd_status
	variable with one of the following values:
	</p><div class="variablelist"><dl class="variablelist"><dt><span class="term">ao_cmd_success</span></dt><dd><p>
		The command was parsed successfully. There is no
		need to assign this value, it is the default.
	      </p></dd><dt><span class="term">ao_cmd_lex_error</span></dt><dd><p>
		A token in the line was invalid, such as a number
		containing invalid characters. The low-level
		lexing functions already assign this value as needed.
	      </p></dd><dt><span class="term">ao_syntax_error</span></dt><dd><p>
		The command line is invalid for some reason other
		than invalid tokens.
	      </p></dd></dl></div><p>
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605108608"></a>2. ao_cmd_lex</h2></div></div></div><pre class="programlisting">
	void
	ao_cmd_lex(void);
      </pre><p>
	This gets the next character out of the command line
	buffer and sticks it into ao_cmd_lex_c. At the end of the
	line, ao_cmd_lex_c will get a newline ('\n') character.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605106528"></a>3. ao_cmd_put16</h2></div></div></div><pre class="programlisting">
	void
	ao_cmd_put16(uint16_t v);
      </pre><p>
	Writes 'v' as four hexadecimal characters.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605104688"></a>4. ao_cmd_put8</h2></div></div></div><pre class="programlisting">
	void
	ao_cmd_put8(uint8_t v);
      </pre><p>
	Writes 'v' as two hexadecimal characters.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605102800"></a>5. ao_cmd_white</h2></div></div></div><pre class="programlisting">
	void
	ao_cmd_white(void)
      </pre><p>
	This skips whitespace by calling ao_cmd_lex while
	ao_cmd_lex_c is either a space or tab. It does not skip
	any characters if ao_cmd_lex_c already non-white.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605100736"></a>6. ao_cmd_hex</h2></div></div></div><pre class="programlisting">
	void
	ao_cmd_hex(void)
      </pre><p>
	This reads a 16-bit hexadecimal value from the command
	line with optional leading whitespace. The resulting value
	is stored in ao_cmd_lex_i;
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605098688"></a>7. ao_cmd_decimal</h2></div></div></div><pre class="programlisting">
	void
	ao_cmd_decimal(void)
      </pre><p>
	This reads a 32-bit decimal value from the command
	line with optional leading whitespace. The resulting value
	is stored in ao_cmd_lex_u32 and the low 16 bits are stored
	in ao_cmd_lex_i;
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605096592"></a>8. ao_match_word</h2></div></div></div><pre class="programlisting">
	uint8_t
	ao_match_word(__code char *word)
      </pre><p>
	This checks to make sure that 'word' occurs on the command
	line. It does not skip leading white space. If 'word' is
	found, then 1 is returned. Otherwise, ao_cmd_status is set to
	ao_cmd_syntax_error and 0 is returned.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605094512"></a>9. ao_cmd_init</h2></div></div></div><pre class="programlisting">
	void
	ao_cmd_init(void
      </pre><p>
	Initializes the command system, setting up the built-in
	commands and adding a task to run the command processing
	loop. It should be called by 'main' before ao_start_scheduler.
      </p></div></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="idm46302605092288"></a>Chapter 10. USB target device</h1></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span class="section"><a href="#idm46302605090064">1. ao_usb_flush</a></span></dt><dt><span class="section"><a href="#idm46302605087920">2. ao_usb_putchar</a></span></dt><dt><span class="section"><a href="#idm46302605085744">3. ao_usb_pollchar</a></span></dt><dt><span class="section"><a href="#idm46302605083600">4. ao_usb_getchar</a></span></dt><dt><span class="section"><a href="#idm46302605081584">5. ao_usb_disable</a></span></dt><dt><span class="section"><a href="#idm46302605078752">6. ao_usb_enable</a></span></dt><dt><span class="section"><a href="#idm46302605076640">7. ao_usb_init</a></span></dt></dl></div><p>
      AltOS contains a full-speed USB target device driver. It can be
      programmed to offer any kind of USB target, but to simplify
      interactions with a variety of operating systems, AltOS provides
      only a single target device profile, that of a USB modem which
      has native drivers for Linux, Windows and Mac OS X. It would be
      easy to change the code to provide an alternate target device if
      necessary.
    </p><p>
      To the rest of the system, the USB device looks like a simple
      two-way byte stream. It can be hooked into the command line
      interface if desired, offering control of the device over the
      USB link. Alternatively, the functions can be accessed directly
      to provide for USB-specific I/O.
    </p><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605090064"></a>1. ao_usb_flush</h2></div></div></div><pre class="programlisting">
	void
	ao_usb_flush(void);
      </pre><p>
	Flushes any pending USB output. This queues an 'IN' packet
	to be delivered to the USB host if there is pending data,
	or if the last IN packet was full to indicate to the host
	that there isn't any more pending data available.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605087920"></a>2. ao_usb_putchar</h2></div></div></div><pre class="programlisting">
	void
	ao_usb_putchar(char c);
      </pre><p>
	If there is a pending 'IN' packet awaiting delivery to the
	host, this blocks until that has been fetched. Then, this
	adds a byte to the pending IN packet for delivery to the
	USB host. If the USB packet is full, this queues the 'IN'
	packet for delivery.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605085744"></a>3. ao_usb_pollchar</h2></div></div></div><pre class="programlisting">
	char
	ao_usb_pollchar(void);
      </pre><p>
	If there are no characters remaining in the last 'OUT'
	packet received, this returns AO_READ_AGAIN. Otherwise, it
	returns the next character, reporting to the host that it
	is ready for more data when the last character is gone.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605083600"></a>4. ao_usb_getchar</h2></div></div></div><pre class="programlisting">
	char
	ao_usb_getchar(void);
      </pre><p>
	This uses ao_pollchar to receive the next character,
	blocking while ao_pollchar returns AO_READ_AGAIN.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605081584"></a>5. ao_usb_disable</h2></div></div></div><pre class="programlisting">
	void
	ao_usb_disable(void);
      </pre><p>
	This turns off the USB controller. It will no longer
	respond to host requests, nor return characters. Calling
	any of the i/o routines while the USB device is disabled
	is undefined, and likely to break things. Disabling the
	USB device when not needed saves power.
      </p><p>
	Note that neither TeleDongle nor TeleMetrum are able to
	signal to the USB host that they have disconnected, so
	after disabling the USB device, it's likely that the cable
	will need to be disconnected and reconnected before it
	will work again.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605078752"></a>6. ao_usb_enable</h2></div></div></div><pre class="programlisting">
	void
	ao_usb_enable(void);
      </pre><p>
	This turns the USB controller on again after it has been
	disabled. See the note above about needing to physically
	remove and re-insert the cable to get the host to
	re-initialize the USB link.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605076640"></a>7. ao_usb_init</h2></div></div></div><pre class="programlisting">
	void
	ao_usb_init(void);
      </pre><p>
	This turns the USB controller on, adds a task to handle
	the control end point and adds the usb I/O functions to
	the stdio system. Call this from main before
	ao_start_scheduler.
      </p></div></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="idm46302605074416"></a>Chapter 11. Serial peripherals</h1></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span class="section"><a href="#idm46302605072400">1. ao_serial_getchar</a></span></dt><dt><span class="section"><a href="#idm46302605070368">2. ao_serial_putchar</a></span></dt><dt><span class="section"><a href="#idm46302605068400">3. ao_serial_drain</a></span></dt><dt><span class="section"><a href="#idm46302605066400">4. ao_serial_set_speed</a></span></dt><dt><span class="section"><a href="#idm46302605064368">5. ao_serial_init</a></span></dt></dl></div><p>
      The CC1111 provides two USART peripherals. AltOS uses one for
      asynch serial data, generally to communicate with a GPS device,
      and the other for a SPI bus. The UART is configured to operate
      in 8-bits, no parity, 1 stop bit framing. The default
      configuration has clock settings for 4800, 9600 and 57600 baud
      operation. Additional speeds can be added by computing
      appropriate clock values.
    </p><p>
      To prevent loss of data, AltOS provides receive and transmit
      fifos of 32 characters each.
    </p><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605072400"></a>1. ao_serial_getchar</h2></div></div></div><pre class="programlisting">
	char
	ao_serial_getchar(void);
      </pre><p>
	Returns the next character from the receive fifo, blocking
	until a character is received if the fifo is empty.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605070368"></a>2. ao_serial_putchar</h2></div></div></div><pre class="programlisting">
	void
	ao_serial_putchar(char c);
      </pre><p>
	Adds a character to the transmit fifo, blocking if the
	fifo is full. Starts transmitting characters.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605068400"></a>3. ao_serial_drain</h2></div></div></div><pre class="programlisting">
	void
	ao_serial_drain(void);
      </pre><p>
	Blocks until the transmit fifo is empty. Used internally
	when changing serial speeds.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605066400"></a>4. ao_serial_set_speed</h2></div></div></div><pre class="programlisting">
	void
	ao_serial_set_speed(uint8_t speed);
      </pre><p>
	Changes the serial baud rate to one of
	AO_SERIAL_SPEED_4800, AO_SERIAL_SPEED_9600 or
	AO_SERIAL_SPEED_57600. This first flushes the transmit
	fifo using ao_serial_drain.
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605064368"></a>5. ao_serial_init</h2></div></div></div><pre class="programlisting">
	void
	ao_serial_init(void)
      </pre><p>
	Initializes the serial peripheral. Call this from 'main'
	before jumping to ao_start_scheduler. The default speed
	setting is AO_SERIAL_SPEED_4800.
      </p></div></div><div class="chapter"><div class="titlepage"><div><div><h1 class="title"><a name="idm46302605062176"></a>Chapter 12. CC1111 Radio peripheral</h1></div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl class="toc"><dt><span class="section"><a href="#idm46302605061504">1. Radio Introduction</a></span></dt><dt><span class="section"><a href="#idm46302605054896">2. ao_radio_set_telemetry</a></span></dt><dt><span class="section"><a href="#idm46302605052800">3. ao_radio_set_packet</a></span></dt><dt><span class="section"><a href="#idm46302605050704">4. ao_radio_set_rdf</a></span></dt><dt><span class="section"><a href="#idm46302605048576">5. ao_radio_idle</a></span></dt><dt><span class="section"><a href="#idm46302605046640">6. ao_radio_get</a></span></dt><dt><span class="section"><a href="#idm46302605044720">7. ao_radio_put</a></span></dt><dt><span class="section"><a href="#idm46302605042944">8. ao_radio_abort</a></span></dt><dt><span class="section"><a href="#idm46302605040992">9. Radio Telemetry</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605039728">9.1. ao_radio_send</a></span></dt><dt><span class="section"><a href="#idm46302605037568">9.2. ao_radio_recv</a></span></dt></dl></dd><dt><span class="section"><a href="#idm46302605035168">10. Radio Direction Finding</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605034048">10.1. ao_radio_rdf</a></span></dt></dl></dd><dt><span class="section"><a href="#idm46302605032016">11. Radio Packet Mode</a></span></dt><dd><dl><dt><span class="section"><a href="#idm46302605030736">11.1. ao_packet_putchar</a></span></dt><dt><span class="section"><a href="#idm46302605028624">11.2. ao_packet_pollchar</a></span></dt><dt><span class="section"><a href="#idm46302605026656">11.3. ao_packet_slave_start</a></span></dt><dt><span class="section"><a href="#idm46302605024768">11.4. ao_packet_slave_stop</a></span></dt><dt><span class="section"><a href="#idm46302605022912">11.5. ao_packet_slave_init</a></span></dt><dt><span class="section"><a href="#idm46302605020944">11.6. ao_packet_master_init</a></span></dt></dl></dd></dl></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605061504"></a>1. Radio Introduction</h2></div></div></div><p>
	The CC1111 radio transceiver sends and receives digital packets
	with forward error correction and detection. The AltOS driver is
	fairly specific to the needs of the TeleMetrum and TeleDongle
	devices, using it for other tasks may require customization of
	the driver itself. There are three basic modes of operation:
	</p><div class="orderedlist"><ol class="orderedlist" type="1"><li class="listitem"><p>
	      Telemetry mode. In this mode, TeleMetrum transmits telemetry
	      frames at a fixed rate. The frames are of fixed size. This
	      is strictly a one-way communication from TeleMetrum to
	      TeleDongle.
	    </p></li><li class="listitem"><p>
	      Packet mode. In this mode, the radio is used to create a
	      reliable duplex byte stream between TeleDongle and
	      TeleMetrum. This is an asymmetrical protocol with
	      TeleMetrum only transmitting in response to a packet sent
	      from TeleDongle. Thus getting data from TeleMetrum to
	      TeleDongle requires polling. The polling rate is adaptive,
	      when no data has been received for a while, the rate slows
	      down. The packets are checked at both ends and invalid
	      data are ignored.
	    </p><p>
	      On the TeleMetrum side, the packet link is hooked into the
	      stdio mechanism, providing an alternate data path for the
	      command processor. It is enabled when the unit boots up in
	      'idle' mode.
	    </p><p>
	      On the TeleDongle side, the packet link is enabled with a
	      command; data from the stdio package is forwarded over the
	      packet link providing a connection from the USB command
	      stream to the remote TeleMetrum device.
	    </p></li><li class="listitem"><p>
	      Radio Direction Finding mode. In this mode, TeleMetrum
	      constructs a special packet that sounds like an audio tone
	      when received by a conventional narrow-band FM
	      receiver. This is designed to provide a beacon to track
	      the device when other location mechanisms fail.
	    </p></li></ol></div><p>
      </p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605054896"></a>2. ao_radio_set_telemetry</h2></div></div></div><pre class="programlisting">
	  void
	  ao_radio_set_telemetry(void);
	</pre><p>
	  Configures the radio to send or receive telemetry
	  packets. This includes packet length, modulation scheme and
	  other RF parameters. It does not include the base frequency
	  or channel though. Those are set at the time of transmission
	  or reception, in case the values are changed by the user.
	</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605052800"></a>3. ao_radio_set_packet</h2></div></div></div><pre class="programlisting">
	  void
	  ao_radio_set_packet(void);
	</pre><p>
	  Configures the radio to send or receive packet data.  This
	  includes packet length, modulation scheme and other RF
	  parameters. It does not include the base frequency or
	  channel though. Those are set at the time of transmission or
	  reception, in case the values are changed by the user.
	</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605050704"></a>4. ao_radio_set_rdf</h2></div></div></div><pre class="programlisting">
	  void
	  ao_radio_set_rdf(void);
	</pre><p>
	  Configures the radio to send RDF 'packets'. An RDF 'packet'
	  is a sequence of hex 0x55 bytes sent at a base bit rate of
	  2kbps using a 5kHz deviation. All of the error correction
	  and data whitening logic is turned off so that the resulting
	  modulation is received as a 1kHz tone by a conventional 70cm
	  FM audio receiver.
	</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605048576"></a>5. ao_radio_idle</h2></div></div></div><pre class="programlisting">
	  void
	  ao_radio_idle(void);
	</pre><p>
	  Sets the radio device to idle mode, waiting until it reaches
	  that state. This will terminate any in-progress transmit or
	  receive operation.
	</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605046640"></a>6. ao_radio_get</h2></div></div></div><pre class="programlisting">
	  void
	  ao_radio_get(void);
	</pre><p>
	  Acquires the radio mutex and then configures the radio
	  frequency using the global radio calibration and channel
	  values.
	</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605044720"></a>7. ao_radio_put</h2></div></div></div><pre class="programlisting">
	  void
	  ao_radio_put(void);
	</pre><p>
	  Releases the radio mutex.
	</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605042944"></a>8. ao_radio_abort</h2></div></div></div><pre class="programlisting">
	  void
	  ao_radio_abort(void);
	</pre><p>
	  Aborts any transmission or reception process by aborting the
	  associated DMA object and calling ao_radio_idle to terminate
	  the radio operation.
	</p></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605040992"></a>9. Radio Telemetry</h2></div></div></div><p>
	In telemetry mode, you can send or receive a telemetry
	packet. The data from receiving a packet also includes the RSSI
	and status values supplied by the receiver. These are added
	after the telemetry data.
      </p><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605039728"></a>9.1. ao_radio_send</h3></div></div></div><pre class="programlisting">
	  void
	  ao_radio_send(__xdata struct ao_telemetry *telemetry);
	</pre><p>
	  This sends the specific telemetry packet, waiting for the
	  transmission to complete. The radio must have been set to
	  telemetry mode. This function calls ao_radio_get() before
	  sending, and ao_radio_put() afterwards, to correctly
	  serialize access to the radio device.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605037568"></a>9.2. ao_radio_recv</h3></div></div></div><pre class="programlisting">
	  void
	  ao_radio_recv(__xdata struct ao_radio_recv *radio);
	</pre><p>
	  This blocks waiting for a telemetry packet to be received.
	  The radio must have been set to telemetry mode. This
	  function calls ao_radio_get() before receiving, and
	  ao_radio_put() afterwards, to correctly serialize access
	  to the radio device. This returns non-zero if a packet was
	  received, or zero if the operation was aborted (from some
	  other task calling ao_radio_abort()).
	</p></div></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605035168"></a>10. Radio Direction Finding</h2></div></div></div><p>
	In radio direction finding mode, there's just one function to
	use
      </p><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605034048"></a>10.1. ao_radio_rdf</h3></div></div></div><pre class="programlisting">
	  void
	  ao_radio_rdf(int ms);
	</pre><p>
	  This sends an RDF packet lasting for the specified amount
	  of time. The maximum length is 1020 ms.
	</p></div></div><div class="section"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="idm46302605032016"></a>11. Radio Packet Mode</h2></div></div></div><p>
	Packet mode is asymmetrical and is configured at compile time
	for either master or slave mode (but not both). The basic I/O
	functions look the same at both ends, but the internals are
	different, along with the initialization steps.
      </p><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605030736"></a>11.1. ao_packet_putchar</h3></div></div></div><pre class="programlisting">
	  void
	  ao_packet_putchar(char c);
	</pre><p>
	  If the output queue is full, this first blocks waiting for
	  that data to be delivered. Then, queues a character for
	  packet transmission. On the master side, this will
	  transmit a packet if the output buffer is full. On the
	  slave side, any pending data will be sent the next time
	  the master polls for data.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605028624"></a>11.2. ao_packet_pollchar</h3></div></div></div><pre class="programlisting">
	  char
	  ao_packet_pollchar(void);
	</pre><p>
	  This returns a pending input character if available,
	  otherwise returns AO_READ_AGAIN. On the master side, if
	  this empties the buffer, it triggers a poll for more data.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605026656"></a>11.3. ao_packet_slave_start</h3></div></div></div><pre class="programlisting">
	  void
	  ao_packet_slave_start(void);
	</pre><p>
	  This is available only on the slave side and starts a task
	  to listen for packet data.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605024768"></a>11.4. ao_packet_slave_stop</h3></div></div></div><pre class="programlisting">
	  void
	  ao_packet_slave_stop(void);
	</pre><p>
	  Disables the packet slave task, stopping the radio receiver.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605022912"></a>11.5. ao_packet_slave_init</h3></div></div></div><pre class="programlisting">
	  void
	  ao_packet_slave_init(void);
	</pre><p>
	  Adds the packet stdio functions to the stdio package so
	  that when packet slave mode is enabled, characters will
	  get send and received through the stdio functions.
	</p></div><div class="section"><div class="titlepage"><div><div><h3 class="title"><a name="idm46302605020944"></a>11.6. ao_packet_master_init</h3></div></div></div><pre class="programlisting">
	  void
	  ao_packet_master_init(void);
	</pre><p>
	  Adds the 'p' packet forward command to start packet mode.
	</p></div></div></div></div></body></html>