summaryrefslogtreecommitdiff
path: root/src/util/make-altitude-pa
blob: d36f3f41de942c7726295e83ac12b39a8ca1ab7f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#!/usr/bin/nickle -f
/*
 * Pressure Sensor Model, version 1.1
 *
 * written by Holly Grimes
 *
 * Uses the International Standard Atmosphere as described in
 *   "A Quick Derivation relating altitude to air pressure" (version 1.03)
 *    from the Portland State Aerospace Society, except that the atmosphere
 *    is divided into layers with each layer having a different lapse rate.
 *
 * Lapse rate data for each layer was obtained from Wikipedia on Sept. 1, 2007
 *    at site <http://en.wikipedia.org/wiki/International_Standard_Atmosphere
 *
 * Height measurements use the local tangent plane.  The postive z-direction is up.
 *
 * All measurements are given in SI units (Kelvin, Pascal, meter, meters/second^2).
 *   The lapse rate is given in Kelvin/meter, the gas constant for air is given
 *   in Joules/(kilogram-Kelvin).
 */

const real GRAVITATIONAL_ACCELERATION = -9.80665;
const real AIR_GAS_CONSTANT = 287.053;
const int NUMBER_OF_LAYERS = 7;
const real MAXIMUM_ALTITUDE = 84852;
const real MINIMUM_PRESSURE = 0.3734;
const real LAYER0_BASE_TEMPERATURE = 288.15;
const real LAYER0_BASE_PRESSURE = 101325;

/* lapse rate and base altitude for each layer in the atmosphere */
const real[NUMBER_OF_LAYERS] lapse_rate = {
	-0.0065, 0.0, 0.001, 0.0028, 0.0, -0.0028, -0.002,
};
const int[NUMBER_OF_LAYERS] base_altitude = {
	0, 11000, 20000, 32000, 47000, 51000, 71000,
};


/* outputs atmospheric pressure associated with the given altitude. altitudes
   are measured with respect to the mean sea level */
real altitude_to_pressure(real altitude) {

   real base_temperature = LAYER0_BASE_TEMPERATURE;
   real base_pressure = LAYER0_BASE_PRESSURE;

   real pressure;
   real base; /* base for function to determine pressure */
   real exponent; /* exponent for function to determine pressure */
   int layer_number; /* identifies layer in the atmosphere */
   int delta_z; /* difference between two altitudes */

   if (altitude > MAXIMUM_ALTITUDE) /* FIX ME: use sensor data to improve model */
      return 0;

   /* calculate the base temperature and pressure for the atmospheric layer
      associated with the inputted altitude */
   for(layer_number = 0; layer_number < NUMBER_OF_LAYERS - 2 && altitude > base_altitude[layer_number + 1]; layer_number++) {
      delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number];
      if (lapse_rate[layer_number] == 0.0) {
         exponent = GRAVITATIONAL_ACCELERATION * delta_z
              / AIR_GAS_CONSTANT / base_temperature;
         base_pressure *= exp(exponent);
      }
      else {
         base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
         exponent = GRAVITATIONAL_ACCELERATION /
              (AIR_GAS_CONSTANT * lapse_rate[layer_number]);
         base_pressure *= pow(base, exponent);
      }
      base_temperature += delta_z * lapse_rate[layer_number];
   }

   /* calculate the pressure at the inputted altitude */
   delta_z = altitude - base_altitude[layer_number];
   if (lapse_rate[layer_number] == 0.0) {
      exponent = GRAVITATIONAL_ACCELERATION * delta_z
           / AIR_GAS_CONSTANT / base_temperature;
      pressure = base_pressure * exp(exponent);
   }
   else {
      base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
      exponent = GRAVITATIONAL_ACCELERATION /
           (AIR_GAS_CONSTANT * lapse_rate[layer_number]);
      pressure = base_pressure * pow(base, exponent);
   }

   return pressure;
}


/* outputs the altitude associated with the given pressure. the altitude
   returned is measured with respect to the mean sea level */
real pressure_to_altitude(real pressure) {

   real next_base_temperature = LAYER0_BASE_TEMPERATURE;
   real next_base_pressure = LAYER0_BASE_PRESSURE;

   real altitude;
   real base_pressure;
   real base_temperature;
   real base; /* base for function to determine base pressure of next layer */
   real exponent; /* exponent for function to determine base pressure
                             of next layer */
   real coefficient;
   int layer_number; /* identifies layer in the atmosphere */
   int delta_z; /* difference between two altitudes */

   if (pressure < 0)  /* illegal pressure */
      return -1;
   if (pressure < MINIMUM_PRESSURE) /* FIX ME: use sensor data to improve model */
      return MAXIMUM_ALTITUDE;

   /* calculate the base temperature and pressure for the atmospheric layer
      associated with the inputted pressure. */
   layer_number = -1;
   while (layer_number < NUMBER_OF_LAYERS - 2) {
      layer_number++;
      base_pressure = next_base_pressure;
      base_temperature = next_base_temperature;
      delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number];
      if (lapse_rate[layer_number] == 0.0) {
         exponent = GRAVITATIONAL_ACCELERATION * delta_z
              / AIR_GAS_CONSTANT / base_temperature;
         next_base_pressure *= exp(exponent);
      }
      else {
         base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
         exponent = GRAVITATIONAL_ACCELERATION /
              (AIR_GAS_CONSTANT * lapse_rate[layer_number]);
         next_base_pressure *= pow(base, exponent);
      }
      next_base_temperature += delta_z * lapse_rate[layer_number];
      if (pressure >= next_base_pressure)
	      break;
   }

   /* calculate the altitude associated with the inputted pressure */
   if (lapse_rate[layer_number] == 0.0) {
      coefficient = (AIR_GAS_CONSTANT / GRAVITATIONAL_ACCELERATION)
                                                    * base_temperature;
      altitude = base_altitude[layer_number]
                    + coefficient * log(pressure / base_pressure);
   }
   else {
      base = pressure / base_pressure;
      exponent = AIR_GAS_CONSTANT * lapse_rate[layer_number]
                                       / GRAVITATIONAL_ACCELERATION;
      coefficient = base_temperature / lapse_rate[layer_number];
      altitude = base_altitude[layer_number]
                      + coefficient * (pow(base, exponent) - 1);
   }
   return altitude;
}

/*
 * Values for our MS5607
 *
 * From the data sheet:
 *
 * Pressure range: 10-1200 mbar (1000 - 120000 Pa)
 *
 * Pressure data is reported in units of Pa
 */

typedef struct {
	real m, b;
} line_t;

/*
 * Linear least-squares fit values in the specified array
 */
line_t best_fit(real[] values, int first, int last) {
       real sum_x = 0, sum_x2 = 0, sum_y = 0, sum_xy = 0;
       int n = last - first + 1;
       real m, b;

       for (int i = first; i <= last; i++) {
	       sum_x += i;
	       sum_x2 += i**2;
	       sum_y += values[i];
	       sum_xy += values[i] * i;
       }
       m = (n*sum_xy - sum_y*sum_x) / (n*sum_x2 - sum_x**2);
       b = sum_y/n - m*(sum_x/n);
       return (line_t) { m = m, b = b };
}

void print_table (int pa_sample_shift, int pa_part_shift)
{
	real	min_Pa = 0;
	real	max_Pa = 120000;

	int pa_part_mask = (1 << pa_part_shift) - 1;

	int num_part = ceil(max_Pa / (2 ** (pa_part_shift + pa_sample_shift)));

	int num_samples = num_part << pa_part_shift;

	real sample_to_Pa(int sample) = sample << pa_sample_shift;

	real sample_to_altitude(int sample) = pressure_to_altitude(sample_to_Pa(sample));

	int part_to_sample(int part) = part << pa_part_shift;

	int sample_to_part(int sample) = sample >> pa_part_shift;

	bool is_part(int sample) = (sample & pa_part_mask) == 0;

	real[num_samples] alt = { [n] = sample_to_altitude(n) };

	int seg_len = 1 << pa_part_shift;

	line_t [num_part] fit = {
		[n] = best_fit(alt, n * seg_len, n * seg_len + seg_len - 1)
	};

	real[num_samples/seg_len + 1]	alt_part;
	real[dim(alt_part)]		alt_error = {0...};

	alt_part[0] = fit[0].b;
	alt_part[dim(fit)] = fit[dim(fit)-1].m * dim(fit) * seg_len + fit[dim(fit)-1].b;

	for (int i = 0; i < dim(fit) - 1; i++) {
		real	here, there;
		here = fit[i].m * (i+1) * seg_len + fit[i].b;
		there = fit[i+1].m * (i+1) * seg_len + fit[i+1].b;
#		printf ("at %d mis-fit %8.2f\n", i, there - here);
		alt_part[i+1] = (here + there) / 2;
	}

	real round(real x) = floor(x + 0.5);

	real sample_to_fit_altitude(int sample) {
		int	sub = sample // seg_len;
			int	off = sample % seg_len;
		line_t	l = fit[sub];
		real r_v;
		real i_v;

		r_v = sample * l.m + l.b;
		i_v = (round(alt_part[sub]*10) * (seg_len - off) + round(alt_part[sub+1]*10) * off) / seg_len;
		return i_v/10;
	}

	real max_error = 0;
	int max_error_sample = 0;
	real total_error = 0;

	for (int sample = 0; sample < num_samples; sample++) {
		real	Pa = sample_to_Pa(sample);
		real	meters = alt[sample];

		real	meters_approx = sample_to_fit_altitude(sample);
		real	error = abs(meters - meters_approx);

		int	part = sample_to_part(sample);

		if (error > alt_error[part])
			alt_error[part] = error;

		total_error += error;
		if (error > max_error) {
			max_error = error;
			max_error_sample = sample;
		}
		if (false) {
			printf ("	%8.1f %8.2f %8.2f %8.2f %s\n",
				Pa,
				meters,
				meters_approx,
				meters - meters_approx,
				is_part(sample) ? "*" : "");
		}
	}

	printf ("/*max error %f at %7.3f kPa. Average error %f*/\n",
		max_error, sample_to_Pa(max_error_sample) / 1000, total_error / num_samples);

	printf ("#define NALT %d\n", dim(alt_part));
	printf ("#define ALT_SHIFT %d\n", pa_part_shift + pa_sample_shift);
	printf ("#ifndef AO_ALT_VALUE\n#define AO_ALT_VALUE(x) (alt_t) (x)\n#endif\n");

	for (int part = 0; part < dim(alt_part); part++) {
		real kPa = sample_to_Pa(part_to_sample(part)) / 1000;
		printf ("AO_ALT_VALUE(%10.1f), /* %6.2f kPa error %6.2fm */\n",
			round (alt_part[part]*10) / 10, kPa,
			alt_error[part]);
	}
}

autoload ParseArgs;

void main()
{
	/* Target is an array of < 1000 entries */
	int pa_sample_shift = 2;
	int pa_part_shift = 6;

	ParseArgs::argdesc argd = {
		.args = {
			{ .var = { .arg_int = &pa_sample_shift },
			  .abbr = 's',
			  .name = "sample",
			  .expr_name = "sample_shift",
			  .desc = "sample shift value" },
			{ .var = { .arg_int = &pa_part_shift },
			  .abbr = 'p',
			  .name = "part",
			  .expr_name = "part_shift",
			  .desc = "part shift value" },
		}
	};

	ParseArgs::parseargs(&argd, &argv);

	print_table(pa_sample_shift, pa_part_shift);
}

main();