summaryrefslogtreecommitdiff
path: root/src/lisp/ao_lisp_const.lisp
blob: 37307a6877758938bb1f9258a701940770560c30 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
;
; Copyright © 2016 Keith Packard <keithp@keithp.com>
;
; This program is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation, either version 2 of the License, or
; (at your option) any later version.
;
; This program is distributed in the hope that it will be useful, but
; WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
; General Public License for more details.
;
; Lisp code placed in ROM

					; return a list containing all of the arguments

(set (quote list) (lexpr (l) l))

					;
					; Define a variable without returning the value
					; Useful when defining functions to avoid
					; having lots of output generated
					;

(set (quote define) (macro (name val rest)
			(list
			 'progn
			 (list
			  'set
			  (list 'quote name)
			  val)
			 (list 'quote name)
			 )
			)
     )

					;
					; A slightly more convenient form
					; for defining lambdas.
					;
					; (defun <name> (<params>) s-exprs)
					;

(define defun (macro (name args exprs)
		  (list
		   define
		   name
		   (cons 'lambda (cons args exprs))
		   )
		  )
     )

					; basic list accessors


(defun cadr (l) (car (cdr l)))

(defun caddr (l) (car (cdr (cdr l))))

(defun nth (list n)
  (cond ((= n 0) (car list))
	((nth (cdr list) (1- n)))
	)
  )

					; simple math operators

(defun 1+ (x) (+ x 1))
(defun 1- (x) (- x 1))

(define if (macro (test args)
	       (cond ((null? (cdr args))
		      (list
		       cond
		       (list test (car args)))
		      )
		     (else
		      (list
		       cond
		       (list test (car args))
		       (list 'else (cadr args))
		       )
		      )
		     )
	       )
     )

(if (> 3 2) 'yes)
(if (> 3 2) 'yes 'no)
(if (> 2 3) 'no 'yes)
(if (> 2 3) 'no)

					; define a set of local
					; variables and then evaluate
					; a list of sexprs
					;
					; (let (var-defines) sexprs)
					;
					; where var-defines are either
					;
					; (name value)
					;
					; or
					;
					; (name)
					;
					; e.g.
					;
					; (let ((x 1) (y)) (set! y (+ x 1)) y)

(define let (macro (vars exprs)
		((lambda (make-names make-exprs make-nils)

					;
					; make the list of names in the let
					;

		   (set! make-names (lambda (vars)
				      (cond ((not (null? vars))
					     (cons (car (car vars))
						   (make-names (cdr vars))))
					    )
				      )
			 )

					; the set of expressions is
					; the list of set expressions
					; pre-pended to the
					; expressions to evaluate

		   (set! make-exprs (lambda (vars exprs)
				      (cond ((not (null? vars)) (cons
						   (list set
							 (list quote
							       (car (car vars))
							       )
							 (cadr (car vars))
							 )
						   (make-exprs (cdr vars) exprs)
						   )
						  )
					    (exprs)
					    )
				      )
			 )

					; the parameters to the lambda is a list
					; of nils of the right length

		   (set! make-nils (lambda (vars)
				     (cond ((not (null? vars)) (cons () (make-nils (cdr vars))))
					   )
				     )
			 )
					; prepend the set operations
					; to the expressions

		   (set! exprs (make-exprs vars exprs))

					; build the lambda.

		   (cons (cons 'lambda (cons (make-names vars) exprs))
			 (make-nils vars)
			 )
		   )
		 ()
		 ()
		 ()
		 )
		)
     )

(let ((x 1)) x)

					; boolean operators

(define or (lexpr (l)
	       (let ((ret #f))
		 (while (not (null? l))
		   (cond ((car l) (set! ret #t) (set! l ()))
			 ((set! l (cdr l)))))
		 ret
		 )
	       )
     )

					; execute to resolve macros

(or #f #t)

(define and (lexpr (l)
	       (let ((ret #t))
		 (while (not (null? l))
		   (cond ((car l)
			  (set! l (cdr l)))
			 (#t
			  (set! ret #f)
			  (set! l ()))
			 )
		   )
		 ret
		 )
	       )
     )

					; execute to resolve macros

(and #t #f)

(defun equal? (a b)
  (cond ((eq? a b) #t)
	((and (pair? a) (pair? b))
	 (and (equal? (car a) (car b))
	      (equal? (cdr a) (cdr b)))
	 )
	(else #f)
	)
  )

(equal? '(a b c) '(a b c))
(equal? '(a b c) '(a b b))