1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
|
#!/usr/bin/env nickle
/*
* Copyright © 2011 Keith Packard <keithp@keithp.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/
autoimport ParseArgs;
load "load_csv.5c"
import load_csv;
load "matrix.5c"
import matrix;
load "kalman_filter.5c"
import kalman;
/*
* AltOS keeps speed and accel scaled
* by 4 bits to provide additional precision
*/
real height_scale = 1.0;
real accel_scale = 16.0;
real speed_scale = 16.0;
/*
* State:
*
* x[0] = height
* x[1] = velocity
* x[2] = acceleration
*/
/*
* Measurement
*
* z[0] = height
* z[1] = acceleration
*/
real default_σ_m = 5;
real default_σ_h = 20;
real default_σ_a = 2;
real[3,3] model_error(t, Φ) = multiply_mat_val ((real[3,3]) {
{ t**5 / 20, t**4 / 8, t**3 / 6 },
{ t**4 / 8, t**3 / 3, t**2 / 2 },
{ t**3 / 6, t**2 / 2, t }
}, Φ);
parameters_t param_both(real t, real σ_m, real σ_h, real σ_a) {
if (σ_m == 0)
σ_m = default_σ_m;
if (σ_h == 0)
σ_h = default_σ_h;
if (σ_a == 0)
σ_a = default_σ_a;
σ_m = imprecise(σ_m) * accel_scale;
σ_h = imprecise(σ_h) * height_scale;
σ_a = imprecise(σ_a) * accel_scale;
t = imprecise(t);
return (parameters_t) {
/*
* Equation computing state k from state k-1
*
* height = height- + velocity- * t + acceleration- * t² / 2
* velocity = velocity- + acceleration- * t
* acceleration = acceleration-
*/
.a = (real[3,3]) {
{ 1,
t * height_scale / speed_scale , t**2/2 * height_scale / accel_scale },
{ 0, 1, t * speed_scale / accel_scale },
{ 0, 0, 1 }
},
/*
* Model error covariance. The only inaccuracy in the
* model is the assumption that acceleration is constant
*/
.q = model_error (t, σ_m**2),
/*
* Measurement error covariance
* Our sensors are independent, so
* this matrix is zero off-diagonal
*/
.r = (real[2,2]) {
{ σ_h ** 2, 0 },
{ 0, σ_a ** 2 },
},
/*
* Extract measurements from state,
* this just pulls out the height and acceleration
* values.
*/
.h = (real[2,3]) {
{ 1, 0, 0 },
{ 0, 0, 1 },
},
};
}
parameters_t param_baro(real t, real σ_m, real σ_h) {
if (σ_m == 0)
σ_m = default_σ_m;
if (σ_h == 0)
σ_h = default_σ_h;
σ_m = imprecise(σ_m) * accel_scale;
σ_h = imprecise(σ_h) * height_scale;
t = imprecise(t);
return (parameters_t) {
/*
* Equation computing state k from state k-1
*
* height = height- + velocity- * t + acceleration- * t² / 2
* velocity = velocity- + acceleration- * t
* acceleration = acceleration-
*/
.a = (real[3,3]) {
{ 1, t * height_scale / speed_scale , t**2/2 * height_scale / accel_scale },
{ 0, 1, t * speed_scale / accel_scale },
{ 0, 0, 1 }
},
/*
* Model error covariance. The only inaccuracy in the
* model is the assumption that acceleration is constant
*/
.q = model_error (t, σ_m**2),
/*
* Measurement error covariance
* Our sensors are independent, so
* this matrix is zero off-diagonal
*/
.r = (real[1,1]) {
{ σ_h ** 2 },
},
/*
* Extract measurements from state,
* this just pulls out the height
* values.
*/
.h = (real[1,3]) {
{ 1, 0, 0 },
},
};
}
parameters_t param_accel(real t, real σ_m, real σ_a) {
if (σ_m == 0)
σ_m = default_σ_m;
if (σ_a == 0)
σ_a = default_σ_a;
σ_m = imprecise(σ_m) * accel_scale;
σ_a = imprecise(σ_a) * accel_scale;
t = imprecise(t);
return (parameters_t) {
/*
* Equation computing state k from state k-1
*
* height = height- + velocity- * t + acceleration- * t² / 2
* velocity = velocity- + acceleration- * t
* acceleration = acceleration-
*/
.a = (real[3,3]) {
{ 1, t * height_scale / speed_scale , t**2/2 * height_scale / accel_scale },
{ 0, 1, t * speed_scale / accel_scale },
{ 0, 0, 1 }
},
/*
* Model error covariance. The only inaccuracy in the
* model is the assumption that acceleration is constant
*/
.q = model_error (t, σ_m**2),
/*
* Measurement error covariance
* Our sensors are independent, so
* this matrix is zero off-diagonal
*/
.r = (real[1,1]) {
{ σ_a ** 2 },
},
/*
* Extract measurements from state,
* this just pulls out the acceleration
* values.
*/
.h = (real[1,3]) {
{ 0, 0, 1 },
},
};
}
parameters_t param_vel(real t) {
static real σ_m = .1;
static real σ_v = imprecise(10);
return (parameters_t) {
/*
* Equation computing state k from state k-1
*
* height = height- + velocity- * t + acceleration- * t² / 2
* velocity = velocity- + acceleration- * t
* acceleration = acceleration-
*/
.a = (real[3,3]) {
{ 1, imprecise(t), imprecise((t**2)/2) },
{ 0, 1, imprecise(t) },
{ 0, 0, 1 }
},
/*
* Model error covariance. The only inaccuracy in the
* model is the assumption that acceleration is constant
*/
.q = model_error (t, σ_m**2),
/*
* Measurement error covariance
* Our sensors are independent, so
* this matrix is zero off-diagonal
*/
.r = (real[1,1]) {
{ σ_v ** 2 },
},
/*
* Extract measurements from state,
* this just pulls out the velocity
* values.
*/
.h = (real[1,3]) {
{ 0, 1, 0 },
},
};
}
real max_baro_height = 18000;
bool just_kalman = true;
real accel_input_scale = 1;
void run_flight(string name, file f, bool summary) {
state_t current_both = {
.x = (real[3]) { 0, 0, 0 },
.p = (real[3,3]) { { 0 ... } ... },
};
state_t current_accel = current_both;
state_t current_baro = current_both;
real t;
real kalman_apogee_time = -1;
real kalman_apogee = 0;
real raw_apogee_time_first;
real raw_apogee_time_last;
real raw_apogee = 0;
real default_descent_rate = 20;
real speed = 0;
real prev_acceleration = 0;
state_t apogee_state;
parameters_fast_t fast_both;
parameters_fast_t fast_baro;
parameters_fast_t fast_accel;
real fast_delta_t = 0;
bool fast = true;
for (;;) {
record_t record = parse_record(f, accel_input_scale);
if (record.done)
break;
if (is_uninit(&t))
t = record.time;
real delta_t = record.time - t;
if (delta_t <= 0)
continue;
t = record.time;
if (record.height > raw_apogee) {
raw_apogee_time_first = record.time;
raw_apogee = record.height;
}
if (record.height == raw_apogee)
raw_apogee_time_last = record.time;
real acceleration = record.acceleration;
real height = record.height;
speed = (speed + (acceleration + prev_acceleration / 2) * delta_t);
prev_acceleration = acceleration;
vec_t z_both = (real[2]) { record.height * height_scale, record.acceleration * accel_scale };
vec_t z_accel = (real[1]) { record.acceleration * accel_scale };
vec_t z_baro = (real[1]) { record.height * height_scale };
if (fast) {
if (delta_t != fast_delta_t) {
fast_both = convert_to_fast(param_both(delta_t, 0, 0, 0));
fast_accel = convert_to_fast(param_accel(delta_t, 0, 0));
fast_baro = convert_to_fast(param_baro(delta_t, 0, 0));
fast_delta_t = delta_t;
}
current_both.x = predict_fast(current_both.x, fast_both);
current_accel.x = predict_fast(current_accel.x, fast_accel);
current_baro.x = predict_fast(current_baro.x, fast_baro);
current_both.x = correct_fast(current_both.x, z_both, fast_both);
current_accel.x = correct_fast(current_accel.x, z_accel, fast_accel);
current_baro.x = correct_fast(current_baro.x, z_baro, fast_baro);
} else {
parameters_t p_both = param_both(delta_t, 0, 0, 0);
parameters_t p_accel = param_accel(delta_t, 0, 0);
parameters_t p_baro = param_baro(delta_t, 0, 0);
state_t pred_both = predict(current_both, p_both);
state_t pred_accel = predict(current_accel, p_accel);
state_t pred_baro = predict(current_baro, p_baro);
state_t next_both = correct(pred_both, z_both, p_both);
state_t next_accel = correct(pred_accel, z_accel, p_accel);
state_t next_baro = correct(pred_baro, z_baro, p_baro);
current_both = next_both;
current_accel = next_accel;
current_baro = next_baro;
}
printf ("%16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f\n",
record.time,
record.height, speed, record.acceleration,
current_both.x[0] / height_scale, current_both.x[1] / speed_scale, current_both.x[2] / accel_scale,
current_accel.x[0] / height_scale, current_accel.x[1] / speed_scale, current_accel.x[2] / accel_scale,
current_baro.x[0] / height_scale, current_baro.x[1] / speed_scale, current_baro.x[2] / accel_scale);
if (kalman_apogee_time < 0) {
if (current_both.x[1] < -1 && current_accel.x[1] < -1 && current_baro.x[1] < -1) {
kalman_apogee = current_both.x[0];
kalman_apogee_time = record.time;
break;
}
}
}
real raw_apogee_time = (raw_apogee_time_last + raw_apogee_time_first) / 2;
if (summary && !just_kalman) {
printf("%s: kalman (%8.2f m %6.2f s) raw (%8.2f m %6.2f s) error %6.2f s\n",
name,
kalman_apogee, kalman_apogee_time,
raw_apogee, raw_apogee_time,
kalman_apogee_time - raw_apogee_time);
}
}
void main() {
bool summary = false;
int user_argind = 1;
real time_step = 0.01;
string compute = "none";
string prefix = "AO_K";
real σ_m = 1;
real σ_h = 4;
real σ_a = 1;
ParseArgs::argdesc argd = {
.args = {
{ .var = { .arg_flag = &summary },
.abbr = 's',
.name = "summary",
.desc = "Print a summary of the flight" },
{ .var = { .arg_real = &max_baro_height },
.abbr = 'm',
.name = "maxbaro",
.expr_name = "height",
.desc = "Set maximum usable barometer height" },
{ .var = { .arg_real = &accel_input_scale, },
.abbr = 'a',
.name = "accel",
.expr_name = "<accel-scale>",
.desc = "Set accelerometer scale factor" },
{ .var = { .arg_real = &time_step, },
.abbr = 't',
.name = "time",
.expr_name = "<time-step>",
.desc = "Set time step for convergence" },
{ .var = { .arg_string = &prefix },
.abbr = 'p',
.name = "prefix",
.expr_name = "<prefix>",
.desc = "Prefix for compute output" },
{ .var = { .arg_string = &compute },
.abbr = 'c',
.name = "compute",
.expr_name = "{both,baro,accel}",
.desc = "Compute Kalman factor through convergence" },
{ .var = { .arg_real = &σ_m },
.abbr = 'M',
.name = "model",
.expr_name = "<model-accel-error>",
.desc = "Model co-variance for acceleration" },
{ .var = { .arg_real = &σ_h },
.abbr = 'H',
.name = "height",
.expr_name = "<measure-height-error>",
.desc = "Measure co-variance for height" },
{ .var = { .arg_real = &σ_a },
.abbr = 'A',
.name = "accel",
.expr_name = "<measure-accel-error>",
.desc = "Measure co-variance for acceleration" },
},
.unknown = &user_argind,
};
ParseArgs::parseargs(&argd, &argv);
if (compute != "none") {
parameters_t param;
printf ("/* Kalman matrix for %s\n", compute);
printf (" * step = %f\n", time_step);
printf (" * σ_m = %f\n", σ_m);
switch (compute) {
case "both":
printf (" * σ_h = %f\n", σ_h);
printf (" * σ_a = %f\n", σ_a);
param = param_both(time_step, σ_m, σ_h, σ_a);
break;
case "accel":
printf (" * σ_a = %f\n", σ_a);
param = param_accel(time_step, σ_m, σ_a);
break;
case "baro":
printf (" * σ_h = %f\n", σ_h);
param = param_baro(time_step, σ_m, σ_h);
break;
}
printf (" */\n\n");
mat_t k = converge(param);
int[] d = dims(k);
int time_inc = floor(1/time_step + 0.5);
for (int i = 0; i < d[0]; i++)
for (int j = 0; j < d[1]; j++) {
string name;
if (d[1] == 1)
name = sprintf("%s_K%d_%d", prefix, i, time_inc);
else
name = sprintf("%s_K%d%d_%d", prefix, i, j, time_inc);
printf ("#define %s to_fix_k(%12.10f)\n", name, k[i,j]);
}
printf ("\n");
exit(0);
}
string[dim(argv) - user_argind] rest = { [i] = argv[i+user_argind] };
# height_scale = accel_scale = speed_scale = 1;
if (dim(rest) == 0)
run_flight("<stdin>", stdin, summary);
else {
for (int i = 0; i < dim(rest); i++) {
twixt(file f = File::open(rest[i], "r"); File::close(f)) {
run_flight(rest[i], f, summary);
}
}
}
}
main();
#kalman(stdin);
#dump(stdin);
|