1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
/*
* Copyright © 2010 Keith Packard <keithp@keithp.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/
/*
* Sensor data conversion functions
*/
package org.altusmetrum.altoslib_2;
public class AltosConvert {
/*
* Pressure Sensor Model, version 1.1
*
* written by Holly Grimes
*
* Uses the International Standard Atmosphere as described in
* "A Quick Derivation relating altitude to air pressure" (version 1.03)
* from the Portland State Aerospace Society, except that the atmosphere
* is divided into layers with each layer having a different lapse rate.
*
* Lapse rate data for each layer was obtained from Wikipedia on Sept. 1, 2007
* at site <http://en.wikipedia.org/wiki/International_Standard_Atmosphere
*
* Height measurements use the local tangent plane. The postive z-direction is up.
*
* All measurements are given in SI units (Kelvin, Pascal, meter, meters/second^2).
* The lapse rate is given in Kelvin/meter, the gas constant for air is given
* in Joules/(kilogram-Kelvin).
*/
public static final double GRAVITATIONAL_ACCELERATION = -9.80665;
public static final double AIR_GAS_CONSTANT = 287.053;
public static final double NUMBER_OF_LAYERS = 7;
public static final double MAXIMUM_ALTITUDE = 84852.0;
public static final double MINIMUM_PRESSURE = 0.3734;
public static final double LAYER0_BASE_TEMPERATURE = 288.15;
public static final double LAYER0_BASE_PRESSURE = 101325;
/* lapse rate and base altitude for each layer in the atmosphere */
public static final double[] lapse_rate = {
-0.0065, 0.0, 0.001, 0.0028, 0.0, -0.0028, -0.002
};
public static final int[] base_altitude = {
0, 11000, 20000, 32000, 47000, 51000, 71000
};
/* outputs atmospheric pressure associated with the given altitude.
* altitudes are measured with respect to the mean sea level
*/
public static double
altitude_to_pressure(double altitude)
{
double base_temperature = LAYER0_BASE_TEMPERATURE;
double base_pressure = LAYER0_BASE_PRESSURE;
double pressure;
double base; /* base for function to determine pressure */
double exponent; /* exponent for function to determine pressure */
int layer_number; /* identifies layer in the atmosphere */
double delta_z; /* difference between two altitudes */
if (altitude > MAXIMUM_ALTITUDE) /* FIX ME: use sensor data to improve model */
return 0;
/* calculate the base temperature and pressure for the atmospheric layer
associated with the inputted altitude */
for(layer_number = 0; layer_number < NUMBER_OF_LAYERS - 1 && altitude > base_altitude[layer_number + 1]; layer_number++) {
delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number];
if (lapse_rate[layer_number] == 0.0) {
exponent = GRAVITATIONAL_ACCELERATION * delta_z
/ AIR_GAS_CONSTANT / base_temperature;
base_pressure *= Math.exp(exponent);
}
else {
base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
exponent = GRAVITATIONAL_ACCELERATION /
(AIR_GAS_CONSTANT * lapse_rate[layer_number]);
base_pressure *= Math.pow(base, exponent);
}
base_temperature += delta_z * lapse_rate[layer_number];
}
/* calculate the pressure at the inputted altitude */
delta_z = altitude - base_altitude[layer_number];
if (lapse_rate[layer_number] == 0.0) {
exponent = GRAVITATIONAL_ACCELERATION * delta_z
/ AIR_GAS_CONSTANT / base_temperature;
pressure = base_pressure * Math.exp(exponent);
}
else {
base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
exponent = GRAVITATIONAL_ACCELERATION /
(AIR_GAS_CONSTANT * lapse_rate[layer_number]);
pressure = base_pressure * Math.pow(base, exponent);
}
return pressure;
}
/* outputs the altitude associated with the given pressure. the altitude
returned is measured with respect to the mean sea level */
public static double
pressure_to_altitude(double pressure)
{
double next_base_temperature = LAYER0_BASE_TEMPERATURE;
double next_base_pressure = LAYER0_BASE_PRESSURE;
double altitude;
double base_pressure;
double base_temperature;
double base; /* base for function to determine base pressure of next layer */
double exponent; /* exponent for function to determine base pressure
of next layer */
double coefficient;
int layer_number; /* identifies layer in the atmosphere */
int delta_z; /* difference between two altitudes */
if (pressure < 0) /* illegal pressure */
return -1;
if (pressure < MINIMUM_PRESSURE) /* FIX ME: use sensor data to improve model */
return MAXIMUM_ALTITUDE;
/* calculate the base temperature and pressure for the atmospheric layer
associated with the inputted pressure. */
layer_number = -1;
do {
layer_number++;
base_pressure = next_base_pressure;
base_temperature = next_base_temperature;
delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number];
if (lapse_rate[layer_number] == 0.0) {
exponent = GRAVITATIONAL_ACCELERATION * delta_z
/ AIR_GAS_CONSTANT / base_temperature;
next_base_pressure *= Math.exp(exponent);
}
else {
base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
exponent = GRAVITATIONAL_ACCELERATION /
(AIR_GAS_CONSTANT * lapse_rate[layer_number]);
next_base_pressure *= Math.pow(base, exponent);
}
next_base_temperature += delta_z * lapse_rate[layer_number];
}
while(layer_number < NUMBER_OF_LAYERS - 1 && pressure < next_base_pressure);
/* calculate the altitude associated with the inputted pressure */
if (lapse_rate[layer_number] == 0.0) {
coefficient = (AIR_GAS_CONSTANT / GRAVITATIONAL_ACCELERATION)
* base_temperature;
altitude = base_altitude[layer_number]
+ coefficient * Math.log(pressure / base_pressure);
}
else {
base = pressure / base_pressure;
exponent = AIR_GAS_CONSTANT * lapse_rate[layer_number]
/ GRAVITATIONAL_ACCELERATION;
coefficient = base_temperature / lapse_rate[layer_number];
altitude = base_altitude[layer_number]
+ coefficient * (Math.pow(base, exponent) - 1);
}
return altitude;
}
public static double
cc_battery_to_voltage(double battery)
{
return battery / 32767.0 * 5.0;
}
public static double
cc_ignitor_to_voltage(double ignite)
{
return ignite / 32767 * 15.0;
}
public static double
barometer_to_pressure(double count)
{
return ((count / 16.0) / 2047.0 + 0.095) / 0.009 * 1000.0;
}
static double
thermometer_to_temperature(double thermo)
{
return (thermo - 19791.268) / 32728.0 * 1.25 / 0.00247;
}
static double mega_adc(int raw) {
return raw / 4095.0;
}
static public double mega_battery_voltage(int v_batt) {
if (v_batt != AltosLib.MISSING)
return 3.3 * mega_adc(v_batt) * (15.0 + 27.0) / 27.0;
return AltosLib.MISSING;
}
static double mega_pyro_voltage(int raw) {
if (raw != AltosLib.MISSING)
return 3.3 * mega_adc(raw) * (100.0 + 27.0) / 27.0;
return AltosLib.MISSING;
}
static double tele_mini_voltage(int sensor) {
double supply = 3.3;
return sensor / 32767.0 * supply * 127/27;
}
static double easy_mini_voltage(int sensor) {
double supply = 3.0;
return sensor / 32767.0 * supply * 127/27;
}
public static double radio_to_frequency(int freq, int setting, int cal, int channel) {
double f;
if (freq > 0)
f = freq / 1000.0;
else {
if (setting <= 0)
setting = cal;
f = 434.550 * setting / cal;
/* Round to nearest 50KHz */
f = Math.floor (20.0 * f + 0.5) / 20.0;
}
return f + channel * 0.100;
}
public static int radio_frequency_to_setting(double frequency, int cal) {
double set = frequency / 434.550 * cal;
return (int) Math.floor (set + 0.5);
}
public static int radio_frequency_to_channel(double frequency) {
int channel = (int) Math.floor ((frequency - 434.550) / 0.100 + 0.5);
if (channel < 0)
channel = 0;
if (channel > 9)
channel = 9;
return channel;
}
public static double radio_channel_to_frequency(int channel) {
return 434.550 + channel * 0.100;
}
public static int[] ParseHex(String line) {
String[] tokens = line.split("\\s+");
int[] array = new int[tokens.length];
for (int i = 0; i < tokens.length; i++)
try {
array[i] = Integer.parseInt(tokens[i], 16);
} catch (NumberFormatException ne) {
return null;
}
return array;
}
public static double meters_to_feet(double meters) {
return meters * (100 / (2.54 * 12));
}
public static double feet_to_meters(double feet) {
return feet * 12 * 2.54 / 100.0;
}
public static double meters_to_miles(double meters) {
return meters_to_feet(meters) / 5280;
}
public static double meters_to_mph(double mps) {
return meters_to_miles(mps) * 3600;
}
public static double meters_to_mach(double meters) {
return meters / 343; /* something close to mach at usual rocket sites */
}
public static double meters_to_g(double meters) {
return meters / 9.80665;
}
public static double c_to_f(double c) {
return c * 9/5 + 32;
}
public static boolean imperial_units = false;
public static AltosDistance distance = new AltosDistance();
public static AltosHeight height = new AltosHeight();
public static AltosSpeed speed = new AltosSpeed();
public static AltosAccel accel = new AltosAccel();
public static AltosTemperature temperature = new AltosTemperature();
public static String show_gs(String format, double a) {
a = meters_to_g(a);
format = format.concat(" g");
return String.format(format, a);
}
public static String say_gs(double a) {
return String.format("%6.0 gees", meters_to_g(a));
}
public static int checksum(int[] data, int start, int length) {
int csum = 0x5a;
for (int i = 0; i < length; i++)
csum += data[i + start];
return csum & 0xff;
}
}
|