1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
|
/*
* Copyright © 2012 Keith Packard <keithp@keithp.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/
#include "ao.h"
#ifndef BEEPER_CHANNEL
#error BEEPER_CHANNEL undefined
#endif
#ifndef BEEPER_TIMER
#define BEEPER_TIMER 1
#endif
#if BEEPER_TIMER == 1
#define timer stm_tim1
#define STM_RCC_TIMER STM_RCC_APB2ENR_TIM1EN
#define stm_rcc_enr stm_rcc.apb2enr
#endif
#if BEEPER_TIMER == 2
#define timer stm_tim2
#define STM_RCC_TIMER STM_RCC_APB1ENR_TIM2EN
#define stm_rcc_enr stm_rcc.apb1enr
#endif
#if BEEPER_TIMER == 3
#define timer stm_tim3
#define STM_RCC_TIMER STM_RCC_APB1ENR_TIM3EN
#define stm_rcc_enr stm_rcc.apb1enr
#endif
#ifndef timer
#error BEEPER_TIMER invalid
#endif
static inline void
disable(void)
{
timer.cr1 = 0;
#if BEEPER_TIMER == 1
timer.bdtr = 0;
#endif
stm_rcc_enr &= ~(1 << STM_RCC_TIMER);
/* Disconnect the timer from the pin */
stm_afr_set(BEEPER_PORT, BEEPER_PIN, STM_AFR_NONE);
}
void
ao_beep(uint8_t beep)
{
if (beep == 0) {
disable();
} else {
stm_rcc_enr |= (1 << STM_RCC_TIMER);
#if BEEPER_TIMER == 1
/* Master output enable */
stm_tim1.bdtr = (1 << STM_TIM1_BDTR_MOE);
stm_tim1.cr2 = ((0 << STM_TIM1_CR2_TI1S) |
(STM_TIM1_CR2_MMS_RESET << STM_TIM1_CR2_MMS) |
(0 << STM_TIM1_CR2_CCDS));
/* Set prescaler to match cc1111 clocks
*/
stm_tim1.psc = AO_TIM_CLK / 750000;
/* 1. Select the counter clock (internal, external, prescaler).
*
* Setting SMCR to zero means use the internal clock
*/
stm_tim1.smcr = 0;
/* 2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers. */
stm_tim1.arr = beep;
stm_tim1.ccr1 = beep;
/* 3. Set the CCxIE and/or CCxDE bits if an interrupt and/or a
* DMA request is to be generated.
*/
/* don't want this */
/* 4. Select the output mode. For example, you must write
* OCxM=011, OCxPE=0, CCxP=0 and CCxE=1 to toggle OCx output
* pin when CNT matches CCRx, CCRx preload is not used, OCx
* is enabled and active high.
*/
#if BEEPER_CHANNEL == 1
stm_tim1.ccmr1 = ((0 << STM_TIM1_CCMR1_OC2CE) |
(STM_TIM1_CCMR_OCM_FROZEN << STM_TIM1_CCMR1_OC2M) |
(0 << STM_TIM1_CCMR1_OC2PE) |
(0 << STM_TIM1_CCMR1_OC2FE) |
(STM_TIM1_CCMR_CCS_OUTPUT << STM_TIM1_CCMR1_CC2S) |
(0 << STM_TIM1_CCMR1_OC1CE) |
(STM_TIM1_CCMR_OCM_TOGGLE << STM_TIM1_CCMR1_OC1M) |
(0 << STM_TIM1_CCMR1_OC1PE) |
(0 << STM_TIM1_CCMR1_OC1FE) |
(STM_TIM1_CCMR_CCS_OUTPUT << STM_TIM1_CCMR1_CC1S));
stm_tim1.ccer = ((0 << STM_TIM1_CCER_CC4P) |
(0 << STM_TIM1_CCER_CC4E) |
(0 << STM_TIM1_CCER_CC3NP) |
(0 << STM_TIM1_CCER_CC3NE) |
(0 << STM_TIM1_CCER_CC3P) |
(0 << STM_TIM1_CCER_CC3E) |
(0 << STM_TIM1_CCER_CC2NP) |
(0 << STM_TIM1_CCER_CC2NE) |
(0 << STM_TIM1_CCER_CC2P) |
(0 << STM_TIM1_CCER_CC2E) |
(0 << STM_TIM1_CCER_CC1NE) |
(0 << STM_TIM1_CCER_CC1P) |
(1 << STM_TIM1_CCER_CC1E));
#endif
#if BEEPER_CHANNEL == 2
stm_tim1.ccmr1 = ((0 << STM_TIM1_CCMR1_OC2CE) |
(STM_TIM1_CCMR_OCM_TOGGLE << STM_TIM1_CCMR1_OC2M) |
(0 << STM_TIM1_CCMR1_OC2PE) |
(0 << STM_TIM1_CCMR1_OC2FE) |
(STM_TIM1_CCMR_CCS_OUTPUT << STM_TIM1_CCMR1_CC2S) |
(0 << STM_TIM1_CCMR1_OC1CE) |
(STM_TIM1_CCMR_OCM_FROZEN << STM_TIM1_CCMR1_OC1M) |
(0 << STM_TIM1_CCMR1_OC1PE) |
(0 << STM_TIM1_CCMR1_OC1FE) |
(STM_TIM1_CCMR_CCS_OUTPUT << STM_TIM1_CCMR1_CC1S));
stm_tim1.ccer = ((0 << STM_TIM1_CCER_CC4P) |
(0 << STM_TIM1_CCER_CC4E) |
(0 << STM_TIM1_CCER_CC3NP) |
(0 << STM_TIM1_CCER_CC3NE) |
(0 << STM_TIM1_CCER_CC3P) |
(0 << STM_TIM1_CCER_CC3E) |
(0 << STM_TIM1_CCER_CC2NP) |
(0 << STM_TIM1_CCER_CC2NE) |
(0 << STM_TIM1_CCER_CC2P) |
(1 << STM_TIM1_CCER_CC2E) |
(0 << STM_TIM1_CCER_CC1NE) |
(0 << STM_TIM1_CCER_CC1P) |
(0 << STM_TIM1_CCER_CC1E));
#endif
#if BEEPER_CHANNEL == 3
stm_tim1.ccmr2 = ((0 << STM_TIM1_CCMR2_OC4CE) |
(STM_TIM1_CCMR_OCM_FROZEN << STM_TIM1_CCMR2_OC4M) |
(0 << STM_TIM1_CCMR2_OC4PE) |
(0 << STM_TIM1_CCMR2_OC4FE) |
(STM_TIM1_CCMR_CCS_OUTPUT << STM_TIM1_CCMR2_CC4S) |
(0 << STM_TIM1_CCMR2_OC3CE) |
(STM_TIM1_CCMR_OCM_TOGGLE << STM_TIM1_CCMR2_OC3M) |
(0 << STM_TIM1_CCMR2_OC3PE) |
(0 << STM_TIM1_CCMR2_OC3FE) |
(STM_TIM1_CCMR_CCS_OUTPUT << STM_TIM1_CCMR2_CC3S));
stm_tim1.ccer = ((0 << STM_TIM1_CCER_CC4P) |
(0 << STM_TIM1_CCER_CC4E) |
(0 << STM_TIM1_CCER_CC3NP) |
(0 << STM_TIM1_CCER_CC3NE) |
(0 << STM_TIM1_CCER_CC3P) |
(1 << STM_TIM1_CCER_CC3E) |
(0 << STM_TIM1_CCER_CC2NP) |
(0 << STM_TIM1_CCER_CC2NE) |
(0 << STM_TIM1_CCER_CC2P) |
(0 << STM_TIM1_CCER_CC2E) |
(0 << STM_TIM1_CCER_CC1NE) |
(0 << STM_TIM1_CCER_CC1P) |
(0 << STM_TIM1_CCER_CC1E));
#endif
#if BEEPER_CHANNEL == 4
stm_tim1.ccmr2 = ((0 << STM_TIM1_CCMR2_OC4CE) |
(STM_TIM1_CCMR2_OC4M_TOGGLE << STM_TIM1_CCMR2_OC4M) |
(0 << STM_TIM1_CCMR2_OC4PE) |
(0 << STM_TIM1_CCMR2_OC4FE) |
(STM_TIM1_CCMR2_CC4S_OUTPUT << STM_TIM1_CCMR2_CC4S) |
(0 << STM_TIM1_CCMR2_OC3CE) |
(STM_TIM1_CCMR2_OC3M_FROZEN << STM_TIM1_CCMR2_OC3M) |
(0 << STM_TIM1_CCMR2_OC3PE) |
(0 << STM_TIM1_CCMR2_OC3FE) |
(STM_TIM1_CCMR2_CC3S_OUTPUT << STM_TIM1_CCMR2_CC3S));
stm_tim1.ccer = ((0 << STM_TIM1_CCER_CC4NP) |
(0 << STM_TIM1_CCER_CC4P) |
(1 << STM_TIM1_CCER_CC4E) |
(0 << STM_TIM1_CCER_CC3NP) |
(0 << STM_TIM1_CCER_CC3P) |
(0 << STM_TIM1_CCER_CC3E) |
(0 << STM_TIM1_CCER_CC2NP) |
(0 << STM_TIM1_CCER_CC2P) |
(0 << STM_TIM1_CCER_CC2E) |
(0 << STM_TIM1_CCER_CC1NP) |
(0 << STM_TIM1_CCER_CC1P) |
(0 << STM_TIM1_CCER_CC1E));
#endif
/* 5. Enable the counter by setting the CEN bit in the TIMx_CR1 register. */
stm_tim1.cr1 = ((STM_TIM1_CR1_CKD_1 << STM_TIM1_CR1_CKD) |
(0 << STM_TIM1_CR1_ARPE) |
(STM_TIM1_CR1_CMS_EDGE << STM_TIM1_CR1_CMS) |
(0 << STM_TIM1_CR1_DIR) |
(0 << STM_TIM1_CR1_OPM) |
(0 << STM_TIM1_CR1_URS) |
(0 << STM_TIM1_CR1_UDIS) |
(1 << STM_TIM1_CR1_CEN));
/* Update the values */
stm_tim1.egr = (1 << STM_TIM1_EGR_UG);
#endif
#if BEEPER_TIMER == 2 || BEEPER_TIMER == 3
timer.cr2 = ((0 << STM_TIM23_CR2_TI1S) |
(STM_TIM23_CR2_MMS_RESET << STM_TIM23_CR2_MMS) |
(0 << STM_TIM23_CR2_CCDS));
/* Set prescaler to match cc1111 clocks
*/
timer.psc = AO_TIM_CLK / 750000;
/* 1. Select the counter clock (internal, external, prescaler).
*
* Setting SMCR to zero means use the internal clock
*/
timer.smcr = 0;
/* 2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers. */
timer.arr = beep;
timer.ccr1 = beep;
/* 3. Set the CCxIE and/or CCxDE bits if an interrupt and/or a
* DMA request is to be generated.
*/
/* don't want this */
/* 4. Select the output mode. For example, you must write
* OCxM=011, OCxPE=0, CCxP=0 and CCxE=1 to toggle OCx output
* pin when CNT matches CCRx, CCRx preload is not used, OCx
* is enabled and active high.
*/
#if BEEPER_CHANNEL == 1
timer.ccmr1 = ((0 << STM_TIM23_CCMR1_OC2CE) |
(STM_TIM23_CCMR1_OC2M_FROZEN << STM_TIM23_CCMR1_OC2M) |
(0 << STM_TIM23_CCMR1_OC2PE) |
(0 << STM_TIM23_CCMR1_OC2FE) |
(STM_TIM23_CCMR1_CC2S_OUTPUT << STM_TIM23_CCMR1_CC2S) |
(0 << STM_TIM23_CCMR1_OC1CE) |
(STM_TIM23_CCMR1_OC1M_TOGGLE << STM_TIM23_CCMR1_OC1M) |
(0 << STM_TIM23_CCMR1_OC1PE) |
(0 << STM_TIM23_CCMR1_OC1FE) |
(STM_TIM23_CCMR1_CC1S_OUTPUT << STM_TIM23_CCMR1_CC1S));
timer.ccer = ((0 << STM_TIM23_CCER_CC4P) |
(0 << STM_TIM23_CCER_CC4E) |
(0 << STM_TIM23_CCER_CC3NP) |
(0 << STM_TIM23_CCER_CC3P) |
(0 << STM_TIM23_CCER_CC3E) |
(0 << STM_TIM23_CCER_CC2NP) |
(0 << STM_TIM23_CCER_CC2P) |
(0 << STM_TIM23_CCER_CC2E) |
(0 << STM_TIM23_CCER_CC1P) |
(1 << STM_TIM23_CCER_CC1E));
#endif
#if BEEPER_CHANNEL == 2
timer.ccmr1 = ((0 << STM_TIM23_CCMR1_OC2CE) |
(STM_TIM23_CCMR1_OC2M_TOGGLE << STM_TIM23_CCMR1_OC2M) |
(0 << STM_TIM23_CCMR1_OC2PE) |
(0 << STM_TIM23_CCMR1_OC2FE) |
(STM_TIM23_CCMR1_CC2S_OUTPUT << STM_TIM23_CCMR1_CC2S) |
(0 << STM_TIM23_CCMR1_OC1CE) |
(STM_TIM23_CCMR1_OC1M_FROZEN << STM_TIM23_CCMR1_OC1M) |
(0 << STM_TIM23_CCMR1_OC1PE) |
(0 << STM_TIM23_CCMR1_OC1FE) |
(STM_TIM23_CCMR1_CC1S_OUTPUT << STM_TIM23_CCMR1_CC1S));
timer.ccer = ((0 << STM_TIM23_CCER_CC4P) |
(0 << STM_TIM23_CCER_CC4E) |
(0 << STM_TIM23_CCER_CC3NP) |
(0 << STM_TIM23_CCER_CC3P) |
(0 << STM_TIM23_CCER_CC3E) |
(0 << STM_TIM23_CCER_CC2NP) |
(0 << STM_TIM23_CCER_CC2P) |
(1 << STM_TIM23_CCER_CC2E) |
(0 << STM_TIM23_CCER_CC1P) |
(0 << STM_TIM23_CCER_CC1E));
#endif
#if BEEPER_CHANNEL == 3
timer.ccmr2 = ((0 << STM_TIM23_CCMR2_OC4CE) |
(STM_TIM23_CCMR2_OC4M_FROZEN << STM_TIM23_CCMR2_OC4M) |
(0 << STM_TIM23_CCMR2_OC4PE) |
(0 << STM_TIM23_CCMR2_OC4FE) |
(STM_TIM23_CCMR2_CC4S_OUTPUT << STM_TIM23_CCMR2_CC4S) |
(0 << STM_TIM23_CCMR2_OC3CE) |
(STM_TIM23_CCMR2_OC3M_TOGGLE << STM_TIM23_CCMR2_OC3M) |
(0 << STM_TIM23_CCMR2_OC3PE) |
(0 << STM_TIM23_CCMR2_OC3FE) |
(STM_TIM23_CCMR2_CC3S_OUTPUT << STM_TIM23_CCMR2_CC3S));
timer.ccer = ((0 << STM_TIM23_CCER_CC4P) |
(0 << STM_TIM23_CCER_CC4E) |
(0 << STM_TIM23_CCER_CC3NP) |
(0 << STM_TIM23_CCER_CC3P) |
(1 << STM_TIM23_CCER_CC3E) |
(0 << STM_TIM23_CCER_CC2NP) |
(0 << STM_TIM23_CCER_CC2P) |
(0 << STM_TIM23_CCER_CC2E) |
(0 << STM_TIM23_CCER_CC1P) |
(0 << STM_TIM23_CCER_CC1E));
#endif
#if BEEPER_CHANNEL == 4
timer.ccmr2 = ((0 << STM_TIM23_CCMR2_OC4CE) |
(STM_TIM23_CCMR2_OC4M_TOGGLE << STM_TIM23_CCMR2_OC4M) |
(0 << STM_TIM23_CCMR2_OC4PE) |
(0 << STM_TIM23_CCMR2_OC4FE) |
(STM_TIM23_CCMR2_CC4S_OUTPUT << STM_TIM23_CCMR2_CC4S) |
(0 << STM_TIM23_CCMR2_OC3CE) |
(STM_TIM23_CCMR2_OC3M_FROZEN << STM_TIM23_CCMR2_OC3M) |
(0 << STM_TIM23_CCMR2_OC3PE) |
(0 << STM_TIM23_CCMR2_OC3FE) |
(STM_TIM23_CCMR2_CC3S_OUTPUT << STM_TIM23_CCMR2_CC3S));
timer.ccer = ((0 << STM_TIM23_CCER_CC4P) |
(1 << STM_TIM23_CCER_CC4E) |
(0 << STM_TIM23_CCER_CC3NP) |
(0 << STM_TIM23_CCER_CC3P) |
(0 << STM_TIM23_CCER_CC3E) |
(0 << STM_TIM23_CCER_CC2NP) |
(0 << STM_TIM23_CCER_CC2P) |
(0 << STM_TIM23_CCER_CC2E) |
(0 << STM_TIM23_CCER_CC1P) |
(0 << STM_TIM23_CCER_CC1E));
#endif
/* 5. Enable the counter by setting the CEN bit in the TIMx_CR1 register. */
timer.cr1 = ((STM_TIM23_CR1_CKD_1 << STM_TIM23_CR1_CKD) |
(0 << STM_TIM23_CR1_ARPE) |
(STM_TIM23_CR1_CMS_EDGE << STM_TIM23_CR1_CMS) |
(0 << STM_TIM23_CR1_DIR) |
(0 << STM_TIM23_CR1_OPM) |
(0 << STM_TIM23_CR1_URS) |
(0 << STM_TIM23_CR1_UDIS) |
(1 << STM_TIM23_CR1_CEN));
/* Update the values */
timer.egr = (1 << STM_TIM23_EGR_UG);
/* Hook the timer up to the beeper pin */
stm_afr_set(BEEPER_PORT, BEEPER_PIN, STM_AFR_AF2);
#endif
}
}
void
ao_beep_for(uint8_t beep, uint16_t ticks) __reentrant
{
ao_beep(beep);
ao_delay(ticks);
ao_beep(0);
}
void
ao_beep_init(void)
{
ao_enable_output(BEEPER_PORT, BEEPER_PIN, BEEPER, 0);
/* Leave the timer off until requested */
stm_rcc_enr &= ~(1 << STM_RCC_TIMER);
}
|