1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
/*
* Copyright © 2012 Keith Packard <keithp@keithp.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/
#include "ao.h"
static volatile __data uint16_t ao_tick_count;
uint16_t ao_time(void)
{
uint16_t v;
ao_arch_critical(
v = ao_tick_count;
);
return v;
}
static __xdata uint8_t ao_forever;
void
ao_delay(uint16_t ticks)
{
ao_alarm(ticks);
ao_sleep(&ao_forever);
}
#if HAS_ADC
volatile __data uint8_t ao_adc_interval = 1;
volatile __data uint8_t ao_adc_count;
#endif
void
ao_debug_out(char c);
void stm_tim6_isr(void)
{
++ao_tick_count;
#if HAS_ADC
if (++ao_adc_count == ao_adc_interval) {
ao_adc_count = 0;
ao_adc_poll();
}
#endif
}
#if HAS_ADC
void
ao_timer_set_adc_interval(uint8_t interval) __critical
{
ao_adc_interval = interval;
ao_adc_count = 0;
}
#endif
#define TIMER_10kHz (STM_APB1 / 10000)
void
ao_timer_init(void)
{
stm_nvic_set_enable(STM_ISR_TIM6_POS);
stm_nvic_set_priority(STM_ISR_TIM6_POS, 1);
/* Turn on timer 6 */
stm_rcc.apb1enr |= (1 << STM_RCC_APB1ENR_TIM6EN);
stm_tim6.psc = TIMER_10kHz;
stm_tim6.arr = 100;
stm_tim6.cnt = 0;
/* Enable update interrupt */
stm_tim6.dier = (1 << STM_TIM67_DIER_UIE);
/* Poke timer to reload values */
stm_tim6.egr |= (1 << STM_TIM67_EGR_UG);
stm_tim6.cr2 = (STM_TIM67_CR2_MMS_RESET << STM_TIM67_CR2_MMS);
/* And turn it on */
stm_tim6.cr1 = ((0 << STM_TIM67_CR1_ARPE) |
(0 << STM_TIM67_CR1_OPM) |
(1 << STM_TIM67_CR1_URS) |
(0 << STM_TIM67_CR1_UDIS) |
(1 << STM_TIM67_CR1_CEN));
}
void
ao_clock_init(void)
{
uint32_t cfgr;
uint32_t cr;
/* Set flash latency to tolerate 32MHz SYSCLK -> 1 wait state */
uint32_t acr = stm_flash.acr;
/* Enable 64-bit access and prefetch */
acr |= (1 << STM_FLASH_ACR_ACC64) | (1 << STM_FLASH_ACR_PRFEN);
stm_flash.acr = acr;
/* Enable 1 wait state so the CPU can run at 32MHz */
/* (haven't managed to run the CPU at 32MHz yet, it's at 16MHz) */
acr |= (1 << STM_FLASH_ACR_LATENCY);
stm_flash.acr = acr;
/* HCLK to 16MHz -> AHB prescaler = /1 */
cfgr = stm_rcc.cfgr;
cfgr &= ~(STM_RCC_CFGR_HPRE_MASK << STM_RCC_CFGR_HPRE);
cfgr |= (STM_RCC_CFGR_HPRE_DIV_1 << STM_RCC_CFGR_HPRE);
stm_rcc.cfgr = cfgr;
while ((stm_rcc.cfgr & (STM_RCC_CFGR_HPRE_MASK << STM_RCC_CFGR_HPRE)) !=
(STM_RCC_CFGR_HPRE_DIV_1 << STM_RCC_CFGR_HPRE))
asm ("nop");
#define STM_AHB_PRESCALER 1
/* PCLK1 to 16MHz -> APB1 Prescaler = 1 */
cfgr = stm_rcc.cfgr;
cfgr &= ~(STM_RCC_CFGR_PPRE1_MASK << STM_RCC_CFGR_PPRE1);
cfgr |= (STM_RCC_CFGR_PPRE1_DIV_1 << STM_RCC_CFGR_PPRE1);
stm_rcc.cfgr = cfgr;
#define STM_APB1_PRESCALER 1
/* PCLK2 to 16MHz -> APB2 Prescaler = 1 */
cfgr = stm_rcc.cfgr;
cfgr &= ~(STM_RCC_CFGR_PPRE2_MASK << STM_RCC_CFGR_PPRE2);
cfgr |= (STM_RCC_CFGR_PPRE2_DIV_1 << STM_RCC_CFGR_PPRE2);
stm_rcc.cfgr = cfgr;
#define STM_APB2_PRESCALER 1
/* Enable power interface clock */
stm_rcc.apb1enr |= (1 << STM_RCC_APB1ENR_PWREN);
/* Set voltage range to 1.8V */
/* poll VOSF bit in PWR_CSR. Wait until it is reset to 0 */
while ((stm_pwr.csr & (1 << STM_PWR_CSR_VOSF)) != 0)
asm("nop");
/* Configure voltage scaling range */
cr = stm_pwr.cr;
cr &= ~(STM_PWR_CR_VOS_MASK << STM_PWR_CR_VOS);
cr |= (STM_PWR_CR_VOS_1_8 << STM_PWR_CR_VOS);
stm_pwr.cr = cr;
/* poll VOSF bit in PWR_CSR. Wait until it is reset to 0 */
while ((stm_pwr.csr & (1 << STM_PWR_CSR_VOSF)) != 0)
asm("nop");
/* Enable HSI RC clock 16MHz */
if (!(stm_rcc.cr & (1 << STM_RCC_CR_HSIRDY))) {
stm_rcc.cr |= (1 << STM_RCC_CR_HSION);
while (!(stm_rcc.cr & (1 << STM_RCC_CR_HSIRDY)))
asm("nop");
}
#define STM_HSI 16000000
/* Switch to direct HSI for SYSCLK */
if ((stm_rcc.cfgr & (STM_RCC_CFGR_SWS_MASK << STM_RCC_CFGR_SWS)) !=
(STM_RCC_CFGR_SWS_HSI << STM_RCC_CFGR_SWS)) {
cfgr = stm_rcc.cfgr;
cfgr &= ~(STM_RCC_CFGR_SW_MASK << STM_RCC_CFGR_SW);
cfgr |= (STM_RCC_CFGR_SW_HSI << STM_RCC_CFGR_SW);
stm_rcc.cfgr = cfgr;
while ((stm_rcc.cfgr & (STM_RCC_CFGR_SWS_MASK << STM_RCC_CFGR_SWS)) !=
(STM_RCC_CFGR_SWS_HSI << STM_RCC_CFGR_SWS))
asm("nop");
}
/* Disable the PLL */
stm_rcc.cr &= ~(1 << STM_RCC_CR_PLLON);
while (stm_rcc.cr & (1 << STM_RCC_CR_PLLRDY))
asm("nop");
/* PLLVCO to 96MHz (for USB) -> PLLMUL = 6, PLLDIV = 4 */
cfgr = stm_rcc.cfgr;
cfgr &= ~(STM_RCC_CFGR_PLLMUL_MASK << STM_RCC_CFGR_PLLMUL);
cfgr &= ~(STM_RCC_CFGR_PLLDIV_MASK << STM_RCC_CFGR_PLLDIV);
// cfgr |= (STM_RCC_CFGR_PLLMUL_6 << STM_RCC_CFGR_PLLMUL);
// cfgr |= (STM_RCC_CFGR_PLLDIV_3 << STM_RCC_CFGR_PLLDIV);
cfgr |= (STM_RCC_CFGR_PLLMUL_6 << STM_RCC_CFGR_PLLMUL);
cfgr |= (STM_RCC_CFGR_PLLDIV_4 << STM_RCC_CFGR_PLLDIV);
#define STM_PLLMUL 6
#define STM_PLLDIV 4
/* PLL source to HSI */
cfgr &= ~(1 << STM_RCC_CFGR_PLLSRC);
#define STM_PLLSRC STM_HSI
stm_rcc.cfgr = cfgr;
/* Enable the PLL and wait for it */
stm_rcc.cr |= (1 << STM_RCC_CR_PLLON);
while (!(stm_rcc.cr & (1 << STM_RCC_CR_PLLRDY)))
asm("nop");
/* Switch to the PLL for the system clock */
cfgr = stm_rcc.cfgr;
cfgr &= ~(STM_RCC_CFGR_SW_MASK << STM_RCC_CFGR_SW);
cfgr |= (STM_RCC_CFGR_SW_PLL << STM_RCC_CFGR_SW);
stm_rcc.cfgr = cfgr;
for (;;) {
uint32_t c, part, mask, val;
c = stm_rcc.cfgr;
mask = (STM_RCC_CFGR_SWS_MASK << STM_RCC_CFGR_SWS);
val = (STM_RCC_CFGR_SWS_PLL << STM_RCC_CFGR_SWS);
part = c & mask;
if (part == val)
break;
}
}
|