1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
/*
* Copyright © 2012 Keith Packard <keithp@keithp.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/
#include "ao.h"
#define NUM_DMA 7
struct ao_dma_config {
void (*isr)(int arg);
int arg;
};
uint8_t ao_dma_done[NUM_DMA];
static struct ao_dma_config ao_dma_config[NUM_DMA];
static uint8_t ao_dma_allocated[NUM_DMA];
static uint8_t ao_dma_mutex[NUM_DMA];
static uint8_t ao_dma_active;
static void
ao_dma_isr(uint8_t index) {
/* Get channel interrupt bits */
uint32_t isr = stm_dma.isr & (STM_DMA_ISR_MASK <<
STM_DMA_ISR(index));
/* Ack them */
stm_dma.ifcr = isr;
if (ao_dma_config[index].isr)
(*ao_dma_config[index].isr)(ao_dma_config[index].arg);
else {
ao_dma_done[index] = 1;
ao_wakeup(&ao_dma_done[index]);
}
}
void stm_dma1_channel1_isr(void) { ao_dma_isr(STM_DMA_INDEX(1)); }
void stm_dma1_channel2_isr(void) { ao_dma_isr(STM_DMA_INDEX(2)); }
void stm_dma1_channel3_isr(void) { ao_dma_isr(STM_DMA_INDEX(3)); }
void stm_dma1_channel4_isr(void) { ao_dma_isr(STM_DMA_INDEX(4)); }
void stm_dma1_channel5_isr(void) { ao_dma_isr(STM_DMA_INDEX(5)); }
void stm_dma1_channel6_isr(void) { ao_dma_isr(STM_DMA_INDEX(6)); }
void stm_dma1_channel7_isr(void) { ao_dma_isr(STM_DMA_INDEX(7)); }
void
ao_dma_set_transfer(uint8_t index,
volatile void *peripheral,
void *memory,
uint16_t count,
uint32_t ccr)
{
if (ao_dma_allocated[index]) {
if (ao_dma_mutex[index])
ao_panic(AO_PANIC_DMA);
ao_dma_mutex[index] = 1;
} else
ao_mutex_get(&ao_dma_mutex[index]);
ao_arch_critical(
if (ao_dma_active++ == 0)
stm_rcc.ahbenr |= (1 << STM_RCC_AHBENR_DMA1EN);
);
stm_dma.channel[index].ccr = ccr | (1 << STM_DMA_CCR_TCIE);
stm_dma.channel[index].cndtr = count;
stm_dma.channel[index].cpar = peripheral;
stm_dma.channel[index].cmar = memory;
ao_dma_config[index].isr = NULL;
}
void
ao_dma_set_isr(uint8_t index, void (*isr)(int), int arg)
{
ao_dma_config[index].arg = arg;
ao_dma_config[index].isr = isr;
}
void
ao_dma_start(uint8_t index)
{
ao_dma_done[index] = 0;
stm_dma.channel[index].ccr |= (1 << STM_DMA_CCR_EN);
}
void
ao_dma_done_transfer(uint8_t index)
{
stm_dma.channel[index].ccr &= ~(1 << STM_DMA_CCR_EN);
ao_arch_critical(
if (--ao_dma_active == 0)
stm_rcc.ahbenr &= ~(1 << STM_RCC_AHBENR_DMA1EN);
);
if (ao_dma_allocated[index])
ao_dma_mutex[index] = 0;
else
ao_mutex_put(&ao_dma_mutex[index]);
}
void
ao_dma_abort(uint8_t index)
{
stm_dma.channel[index].ccr &= ~(1 << STM_DMA_CCR_EN);
ao_wakeup(&ao_dma_done[index]);
}
void
ao_dma_alloc(uint8_t index)
{
if (ao_dma_allocated[index])
ao_panic(AO_PANIC_DMA);
ao_dma_allocated[index] = 1;
}
void
ao_dma_init(void)
{
int index;
for (index = 0; index < STM_NUM_DMA; index++) {
stm_nvic_set_enable(STM_ISR_DMA1_CHANNEL1_POS + index);
stm_nvic_set_priority(STM_ISR_DMA1_CHANNEL1_POS + index, 4);
ao_dma_allocated[index] = 0;
ao_dma_mutex[index] = 0;
}
}
|