blob: 3ba6aaf50fa6990c4534577eb15d554fb7f276ce (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
;
; Copyright © 2016 Keith Packard <keithp@keithp.com>
;
; This program is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation, either version 2 of the License, or
; (at your option) any later version.
;
; This program is distributed in the hope that it will be useful, but
; WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
; General Public License for more details.
;
; Lisp code placed in ROM
; return a list containing all of the arguments
(set (quote list) (lexpr (l) l))
;
; Define a variable without returning the value
; Useful when defining functions to avoid
; having lots of output generated
;
(set (quote define) (macro (name val rest)
(list
'progn
(list
'set
(list 'quote name)
val)
(list 'quote name)
)
)
)
;
; A slightly more convenient form
; for defining lambdas.
;
; (defun <name> (<params>) s-exprs)
;
(define defun (macro (name args exprs)
(list
define
name
(cons 'lambda (cons args exprs))
)
)
)
; basic list accessors
(defun cadr (l) (car (cdr l)))
(defun caddr (l) (car (cdr (cdr l))))
(defun nth (list n)
(cond ((= n 0) (car list))
((nth (cdr list) (1- n)))
)
)
; simple math operators
(defun 1+ (x) (+ x 1))
(defun 1- (x) (- x 1))
(define zero? (macro (value rest)
(list
eq?
value
0)
)
)
(zero? 1)
(zero? 0)
(zero? "hello")
(define positive? (macro (value rest)
(list
>
value
0)
)
)
(positive? 12)
(positive? -12)
(define negative? (macro (value rest)
(list
<
value
0)
)
)
(negative? 12)
(negative? -12)
(defun abs (x) (cond ((>= x 0) x)
(else (- x)))
)
(abs 12)
(abs -12)
(define max (lexpr (first rest)
(while (not (null? rest))
(cond ((< first (car rest))
(set! first (car rest)))
)
(set! rest (cdr rest))
)
first)
)
(max 1 2 3)
(max 3 2 1)
(define min (lexpr (first rest)
(while (not (null? rest))
(cond ((> first (car rest))
(set! first (car rest)))
)
(set! rest (cdr rest))
)
first)
)
(min 1 2 3)
(min 3 2 1)
(defun even? (x) (zero? (% x 2)))
(even? 2)
(even? -2)
(even? 3)
(even? -1)
(defun odd? (x) (not (even? x)))
(odd? 2)
(odd? -2)
(odd? 3)
(odd? -1)
(define exact? number?)
(defun inexact? (x) #f)
; (if <condition> <if-true>)
; (if <condition> <if-true> <if-false)
(define if (macro (test args)
(cond ((null? (cdr args))
(list
cond
(list test (car args)))
)
(else
(list
cond
(list test (car args))
(list 'else (cadr args))
)
)
)
)
)
(if (> 3 2) 'yes)
(if (> 3 2) 'yes 'no)
(if (> 2 3) 'no 'yes)
(if (> 2 3) 'no)
; define a set of local
; variables and then evaluate
; a list of sexprs
;
; (let (var-defines) sexprs)
;
; where var-defines are either
;
; (name value)
;
; or
;
; (name)
;
; e.g.
;
; (let ((x 1) (y)) (set! y (+ x 1)) y)
(define let (macro (vars exprs)
((lambda (make-names make-exprs make-nils)
;
; make the list of names in the let
;
(set! make-names (lambda (vars)
(cond ((not (null? vars))
(cons (car (car vars))
(make-names (cdr vars))))
)
)
)
; the set of expressions is
; the list of set expressions
; pre-pended to the
; expressions to evaluate
(set! make-exprs (lambda (vars exprs)
(cond ((not (null? vars)) (cons
(list set
(list quote
(car (car vars))
)
(cadr (car vars))
)
(make-exprs (cdr vars) exprs)
)
)
(exprs)
)
)
)
; the parameters to the lambda is a list
; of nils of the right length
(set! make-nils (lambda (vars)
(cond ((not (null? vars)) (cons () (make-nils (cdr vars))))
)
)
)
; prepend the set operations
; to the expressions
(set! exprs (make-exprs vars exprs))
; build the lambda.
(cons (cons 'lambda (cons (make-names vars) exprs))
(make-nils vars)
)
)
()
()
()
)
)
)
(let ((x 1)) x)
; boolean operators
(define or (lexpr (l)
(let ((ret #f))
(while (not (null? l))
(cond ((car l) (set! ret #t) (set! l ()))
((set! l (cdr l)))))
ret
)
)
)
; execute to resolve macros
(or #f #t)
(define and (lexpr (l)
(let ((ret #t))
(while (not (null? l))
(cond ((car l)
(set! l (cdr l)))
(#t
(set! ret #f)
(set! l ()))
)
)
ret
)
)
)
; execute to resolve macros
(and #t #f)
(define append (lexpr (args)
(let ((append-list (lambda (a b)
(cond ((null? a) b)
(else (cons (car a) (append-list (cdr a) b)))
)
)
)
(append-lists (lambda (lists)
(cond ((null? lists) lists)
((null? (cdr lists)) (car lists))
(else (append-list (car lists) (append-lists (cdr lists))))
)
)
)
)
(append-lists args)
)
)
)
(append '(a b c) '(d e f) '(g h i))
(defun reverse (list)
(let ((result ()))
(while (not (null? list))
(set! result (cons (car list) result))
(set! list (cdr list))
)
result)
)
(reverse '(1 2 3))
(define list-tail
(lambda (x k)
(if (zero? k)
x
(list-tail (cdr x) (- k 1)))))
(list-tail '(1 2 3) 2)
; recursive equality
(defun equal? (a b)
(cond ((eq? a b) #t)
((and (pair? a) (pair? b))
(and (equal? (car a) (car b))
(equal? (cdr a) (cdr b)))
)
(else #f)
)
)
(equal? '(a b c) '(a b c))
(equal? '(a b c) '(a b b))
;(define number->string (lexpr (arg opt)
; (let ((base (if (null? opt) 10 (car opt)))
;
;
|