summaryrefslogtreecommitdiff
path: root/src/lisp/ao_lisp_const.lisp
blob: 5c1aa75be79f983bfdab5c019286feea9c82ac3a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
;
; Copyright © 2016 Keith Packard <keithp@keithp.com>
;
; This program is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation, either version 2 of the License, or
; (at your option) any later version.
;
; This program is distributed in the hope that it will be useful, but
; WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
; General Public License for more details.
;
; Lisp code placed in ROM

					; return a list containing all of the arguments
(set (quote list) (lexpr (l) l))

(set (quote set!)
     (macro (name value rest)
	    (list
	     set
	     (list
	      quote
	      name)
	     value)
	    )
     )

(set! append
     (lexpr (args)
	    ((lambda (append-list append-lists)
	       (set! append-list
		    (lambda (a b)
		      (cond ((null? a) b)
			    (else (cons (car a) (append-list (cdr a) b)))
			    )
		      )
		    )
	       (set! append-lists
		    (lambda (lists)
		      (cond ((null? lists) lists)
			    ((null? (cdr lists)) (car lists))
			    (else (append-list (car lists) (append-lists (cdr lists))))
			    )
		      )
		    )
	       (append-lists args)
	       ) () ())
	    )
     )

(append '(a b c) '(d e f) '(g h i))

					; boolean operators

(set! or
     (macro (l)
	    ((lambda (_or)
	       (set! _or
		    (lambda (l)
		      (cond ((null? l) #f)
			    ((null? (cdr l))
			     (car l))
			    (else
			     (list
			      cond
			      (list
			       (car l))
			      (list
			       'else
			       (_or (cdr l))
			       )
			      )
			     )
			    )
		      )
		    )
	       (_or l)) ())))

					; execute to resolve macros

(or #f #t)


(set! and
     (macro (l)
	    ((lambda (_and)
	       (set! _and
		    (lambda (l)
		      (cond ((null? l) #t)
			    ((null? (cdr l))
			     (car l))
			    (else
			     (list
			      cond
			      (list
			       (car l)
			       (_and (cdr l))
			       )
			      )
			     )
			    )
		      )
		    )
	       (_and l)) ())
	    )
     )


					; execute to resolve macros

(and #t #f)

(set! quasiquote
  (macro (x rest)
	 ((lambda (constant? combine-skeletons expand-quasiquote)
	    (set! constant?
					; A constant value is either a pair starting with quote,
					; or anything which is neither a pair nor a symbol

		 (lambda (exp)
		   (cond ((pair? exp)
			  (eq? (car exp) 'quote)
			  )
			 (else
			  (not (symbol? exp))
			  )
			 )
		   )
		 )
	    (set! combine-skeletons
		 (lambda (left right exp)
		   (cond
		    ((and (constant? left) (constant? right)) 
		     (cond ((and (eqv? (eval left) (car exp))
				 (eqv? (eval right) (cdr exp)))
			    (list 'quote exp)
			    )
			   (else
			    (list 'quote (cons (eval left) (eval right)))
			    )
			   )
		     )
		    ((null? right)
		     (list 'list left)
		     )
		    ((and (pair? right) (eq? (car right) 'list))
		     (cons 'list (cons left (cdr right)))
		     )
		    (else
		     (list 'cons left right)
		     )
		    )
		   )
		 )

	    (set! expand-quasiquote
		 (lambda (exp nesting)
		   (cond

					; non cons -- constants
					; themselves, others are
					; quoted

		    ((not (pair? exp)) 
		     (cond ((constant? exp)
			    exp
			    )
			   (else
			    (list 'quote exp)
			    )
			   )
		     )

					; check for an unquote exp and
					; add the param unquoted

		    ((and (eq? (car exp) 'unquote) (= (length exp) 2))
		     (cond ((= nesting 0)
			    (car (cdr exp))
			    )
			   (else
			    (combine-skeletons ''unquote 
					       (expand-quasiquote (cdr exp) (- nesting 1))
					       exp))
			   )
		     )

					; nested quasi-quote --
					; construct the right
					; expression

		    ((and (eq? (car exp) 'quasiquote) (= (length exp) 2))
		     (combine-skeletons ''quasiquote 
					(expand-quasiquote (cdr exp) (+ nesting 1))
					exp))

					; check for an
					; unquote-splicing member,
					; compute the expansion of the
					; value and append the rest of
					; the quasiquote result to it

		    ((and (pair? (car exp))
			  (eq? (car (car exp)) 'unquote-splicing)
			  (= (length (car exp)) 2))
		     (cond ((= nesting 0)
			    (list 'append (car (cdr (car exp)))
				  (expand-quasiquote (cdr exp) nesting))
			    )
			   (else
			    (combine-skeletons (expand-quasiquote (car exp) (- nesting 1))
					       (expand-quasiquote (cdr exp) nesting)
					       exp))
			   )
		     )

					; for other lists, just glue
					; the expansion of the first
					; element to the expansion of
					; the rest of the list

		    (else (combine-skeletons (expand-quasiquote (car exp) nesting)
					     (expand-quasiquote (cdr exp) nesting)
					     exp)
			  )
		    )
		   )
		 )
	    (expand-quasiquote x 0)
	    ) () () ())
	 )
  )
					;
					; Define a variable without returning the value
					; Useful when defining functions to avoid
					; having lots of output generated.
					;
					; Also accepts the alternate
					; form for defining lambdas of
					; (define (name x y z) sexprs ...) 
					;

(set! define
      (macro (first rest)

					; check for alternate lambda definition form

	     (cond ((list? first)
		    (set! rest
			  (append
			   (list
			    'lambda
			    (cdr first))
			   rest))
		    (set! first (car first))
		    )
		   (else
		    (set! rest (car rest))
		    )
		   )
	     `(begin
	       (set! ,first ,rest)
	       (quote ,first))
	     )
      )

					; basic list accessors


(define (caar l) (car (car l)))

(define (cadr l) (car (cdr l)))

(define (cdar l) (cdr (car l)))

(define (caddr l) (car (cdr (cdr l))))

(define (list-tail x k)
  (if (zero? k)
      x
    (list-tail (cdr x (- k 1)))
    )
  )

(define (list-ref x k)
  (car (list-tail x k))
  )

					; (if <condition> <if-true>)
					; (if <condition> <if-true> <if-false)

(define if
  (macro (test args)
	 (cond ((null? (cdr args))
		`(cond (,test ,(car args)))
		)
	       (else
		`(cond (,test ,(car args))
		       (else ,(cadr args)))
		)
	       )
	 )
  )

(if (> 3 2) 'yes)
(if (> 3 2) 'yes 'no)
(if (> 2 3) 'no 'yes)
(if (> 2 3) 'no)

					; simple math operators

(define zero? (macro (value rest) `(eq? ,value 0)))

(zero? 1)
(zero? 0)
(zero? "hello")

(define positive? (macro (value rest) `(> ,value 0)))

(positive? 12)
(positive? -12)

(define negative? (macro (value rest) `(< ,value 0)))

(negative? 12)
(negative? -12)

(define (abs x) (if (>= x 0) x (- x)))

(abs 12)
(abs -12)

(define max (lexpr (first rest)
		   (while (not (null? rest))
		     (cond ((< first (car rest))
			    (set! first (car rest)))
			   )
		     (set! rest (cdr rest))
		     )
		   first)
  )

(max 1 2 3)
(max 3 2 1)

(define min (lexpr (first rest)
		   (while (not (null? rest))
		     (cond ((> first (car rest))
			    (set! first (car rest)))
			   )
		     (set! rest (cdr rest))
		     )
		   first)
  )

(min 1 2 3)
(min 3 2 1)

(define (even? x) (zero? (% x 2)))

(even? 2)
(even? -2)
(even? 3)
(even? -1)

(define (odd? x) (not (even? x)))

(odd? 2)
(odd? -2)
(odd? 3)
(odd? -1)


					; define a set of local
					; variables all at once and
					; then evaluate a list of
					; sexprs
					;
					; (let (var-defines) sexprs)
					;
					; where var-defines are either
					;
					; (name value)
					;
					; or
					;
					; (name)
					;
					; e.g.
					;
					; (let ((x 1) (y)) (set! y (+ x 1)) y)

(define let (macro (vars exprs)
		((lambda (make-names make-vals)

					;
					; make the list of names in the let
					;

		   (set! make-names (lambda (vars)
				      (cond ((not (null? vars))
					     (cons (car (car vars))
						   (make-names (cdr vars))))
					    (else ())
					    )
				      )
			 )

					; the parameters to the lambda is a list
					; of nils of the right length

		   (set! make-vals (lambda (vars)
				     (cond ((not (null? vars))
					    (cons (cond ((null? (cdr (car vars))) ())
							(else
							 (car (cdr (car vars))))
							)
						  (make-vals (cdr vars))))
					   (else ())
					   )
				     )
			 )
					; prepend the set operations
					; to the expressions

					; build the lambda.

		   `((lambda ,(make-names vars) ,@exprs) ,@(make-vals vars))
		   )
		 ()
		 ()
		 )
		)
     )
		   

(let ((x 1) (y)) (set! y 2) (+ x y))

					; define a set of local
					; variables one at a time and
					; then evaluate a list of
					; sexprs
					;
					; (let* (var-defines) sexprs)
					;
					; where var-defines are either
					;
					; (name value)
					;
					; or
					;
					; (name)
					;
					; e.g.
					;
					; (let* ((x 1) (y)) (set! y (+ x 1)) y)

(define let* (macro (vars exprs)
		((lambda (make-names make-exprs make-nils)

					;
					; make the list of names in the let
					;

		   (set! make-names (lambda (vars)
				      (cond ((not (null? vars))
					     (cons (car (car vars))
						   (make-names (cdr vars))))
					    (else ())
					    )
				      )
			 )

					; the set of expressions is
					; the list of set expressions
					; pre-pended to the
					; expressions to evaluate

		   (set! make-exprs (lambda (vars exprs)
				      (cond ((not (null? vars))
					     (cons
					      (list set
						    (list quote
							  (car (car vars))
							  )
						    (cond ((null? (cdr (car vars))) ())
							  (else (cadr (car vars))))
						    )
					      (make-exprs (cdr vars) exprs)
					      )
					     )
					    (else exprs)
					    )
				      )
			 )

					; the parameters to the lambda is a list
					; of nils of the right length

		   (set! make-nils (lambda (vars)
				     (cond ((not (null? vars)) (cons () (make-nils (cdr vars))))
					   (else ())
					   )
				     )
			 )
					; prepend the set operations
					; to the expressions

		   (set! exprs (make-exprs vars exprs))

					; build the lambda.

		   `((lambda ,(make-names vars) ,@exprs) ,@(make-nils vars))
		   )
		 ()
		 ()
		 ()
		 )
		)
     )

(let* ((x 1)) x)

(define when (macro (test l) `(cond (,test ,@l))))

(when #t (write 'when))

(define unless (macro (test l) `(cond ((not ,test) ,@l))))

(unless #f (write 'unless))

(define (reverse list)
  (let ((result ()))
    (while (not (null? list))
      (set! result (cons (car list) result))
      (set! list (cdr list))
      )
    result)
  )

(reverse '(1 2 3))

(define (list-tail x k)
  (if (zero? k)
      x
    (list-tail (cdr x) (- k 1)))))

(list-tail '(1 2 3) 2)

(define (list-ref x k) (car (list-tail x k)))

(list-ref '(1 2 3) 2)
    
					; recursive equality

(define (equal? a b)
  (cond ((eq? a b) #t)
	((and (pair? a) (pair? b))
	 (and (equal? (car a) (car b))
	      (equal? (cdr a) (cdr b)))
	 )
	(else #f)
	)
  )

(equal? '(a b c) '(a b c))
(equal? '(a b c) '(a b b))

(define member (lexpr (obj list test?)
		      (cond ((null? list)
			     #f
			     )
			    (else
			     (if (null? test?) (set! test? equal?) (set! test? (car test?)))
			     (if (test? obj (car list))
				 list
			       (member obj (cdr list) test?))
			     )
			    )
		      )
  )

(member '(2) '((1) (2) (3)))

(member '(4) '((1) (2) (3)))

(define (memq obj list) (member obj list eq?))

(memq 2 '(1 2 3))

(memq 4 '(1 2 3))

(memq '(2) '((1) (2) (3)))

(define (memv obj list) (member obj list eqv?))

(memv 2 '(1 2 3))

(memv 4 '(1 2 3))

(memv '(2) '((1) (2) (3)))

(define (_assoc obj list test?)
  (if (null? list)
      #f
    (if (test? obj (caar list))
	(car list)
      (_assoc obj (cdr list) test?)
      )
    )
  )

(define (assq obj list) (_assoc obj list eq?))
(define (assv obj list) (_assoc obj list eqv?))
(define (assoc obj list) (_assoc obj list equal?))

(assq 'a '((a 1) (b 2) (c 3)))
(assv 'b '((a 1) (b 2) (c 3)))
(assoc '(c) '((a 1) (b 2) ((c) 3)))

(define char? integer?)

(char? #\q)
(char? "h")

(define (char-upper-case? c) (<= #\A c #\Z))

(char-upper-case? #\a)
(char-upper-case? #\B)
(char-upper-case? #\0)
(char-upper-case? #\space)

(define (char-lower-case? c) (<= #\a c #\a))

(char-lower-case? #\a)
(char-lower-case? #\B)
(char-lower-case? #\0)
(char-lower-case? #\space)

(define (char-alphabetic? c) (or (char-upper-case? c) (char-lower-case? c)))

(char-alphabetic? #\a)
(char-alphabetic? #\B)
(char-alphabetic? #\0)
(char-alphabetic? #\space)

(define (char-numeric? c) (<= #\0 c #\9))

(char-numeric? #\a)
(char-numeric? #\B)
(char-numeric? #\0)
(char-numeric? #\space)

(define (char-whitespace? c) (or (<= #\tab c #\return) (= #\space c)))

(char-whitespace? #\a)
(char-whitespace? #\B)
(char-whitespace? #\0)
(char-whitespace? #\space)

(define (char->integer c) c)
(define (integer->char c) char-integer)

(define (char-upcase c) (if (char-lower-case? c) (+ c (- #\A #\a)) c))

(char-upcase #\a)
(char-upcase #\B)
(char-upcase #\0)
(char-upcase #\space)

(define (char-downcase c) (if (char-upper-case? c) (+ c (- #\a #\A)) c))

(char-downcase #\a)
(char-downcase #\B)
(char-downcase #\0)
(char-downcase #\space)

(define string (lexpr (chars) (list->string chars)))

(display "apply\n")
(apply cons '(a b))

(define map (lexpr (proc lists)
		   (let* ((args (lambda (lists)
				  (if (null? lists) ()
				    (cons (caar lists) (args (cdr lists))))))
			  (next (lambda (lists)
				  (if (null? lists) ()
				    (cons (cdr (car lists)) (next (cdr lists))))))
			  (domap (lambda (lists)
				   (if (null? (car lists)) ()
				     (cons (apply proc (args lists)) (domap (next lists)))
				     )))
			  )
		     (domap lists))))

(map cadr '((a b) (d e) (g h)))

(define for-each (lexpr (proc lists)
			(apply map proc lists)
			#t))

(for-each display '("hello" " " "world" "\n"))

(define _string-ml (lambda (strings)
			     (if (null? strings) ()
			       (cons (string->list (car strings)) (_string-ml (cdr strings))))))

(define string-map (lexpr (proc strings)
			  (list->string (apply map proc (_string-ml strings))))))

(string-map (lambda (x) (+ 1 x)) "HAL")

(define string-for-each (lexpr (proc strings)
			       (apply for-each proc (_string-ml strings))))

(string-for-each write-char "IBM\n")

(define newline (lambda () (write-char #\newline)))

(newline)

(call-with-current-continuation
 (lambda (exit)
   (for-each (lambda (x)
	       (write "test" x)
	       (if (negative? x)
		   (exit x)))
	     '(54 0 37 -3 245 19))
   #t))


					; `q -> (quote q)
					; `(q) -> (append (quote (q)))
					; `(a ,(+ 1 2)) -> (append (quote (a)) (list (+ 1 2)))
					; `(a ,@(list 1 2 3) -> (append (quote (a)) (list 1 2 3))



`(hello ,(+ 1 2) ,@(list 1 2 3) `foo)

(define repeat (macro (count rest)
		       `(let ((__count__ ,count))
			  (while (<= 0 (set! __count__ (- __count__ 1))) ,@rest))))

(repeat 2 (write 'hello))
(repeat 3 (write 'goodbye))

(define case (macro (test l)
		    (let* ((_unarrow
					; construct the body of the
					; case, dealing with the
					; lambda version ( => lambda)
			    
			    (lambda (l)
			      (cond ((null? l) l)
				    ((eq? (car l) '=>) `(( ,(cadr l) __key__)))
				    (else l))))
			   (_case (lambda (l)

					; Build the case elements, which is
					; simply a list of cond clauses

				    (cond ((null? l) ())

					; else case

					  ((eq? (caar l) 'else)
					   `((else ,@(_unarrow (cdr (car l))))))

					; regular case
					  
					  (else
					   (cons
					    `((eqv? ,(caar l) __key__)
					      ,@(_unarrow (cdr (car l))))
					    (_case (cdr l)))
					   )
					  ))))

					; now construct the overall
					; expression, using a lambda
					; to hold the computed value
					; of the test expression

		      `((lambda (__key__)
			  (cond ,@(_case l))) ,test))))

(case 12 (1 "one") (2 "two") (3 => (lambda (x) (write "the value is" x))) (12 "twelve") (else "else"))

;(define number->string (lexpr (arg opt)
;			      (let ((base (if (null? opt) 10 (car opt)))
					;
;