summaryrefslogtreecommitdiff
path: root/src/drivers/ao_aprs.c
blob: b45ef8c573cf92c27be3d6b452d5cd026c9465ac (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
/** 
 * http://ad7zj.net/kd7lmo/aprsbeacon_code.html
 *
 * @mainpage Pico Beacon
 *
 * @section overview_sec Overview
 *
 * The Pico Beacon is an APRS based tracking beacon that operates in the UHF 420-450MHz band.  The device utilizes a 
 * Microchip PIC 18F2525 embedded controller, Motorola M12+ GPS engine, and Analog Devices AD9954 DDS.  The device is capable
 * of generating a 1200bps A-FSK and 9600 bps FSK AX.25 compliant APRS (Automatic Position Reporting System) message.


 *
 * @section history_sec Revision History
 *
 * @subsection v305 V3.05
 * 23 Dec 2006, Change include; (1) change printf format width to conform to ANSI standard when new CCS 4.xx compiler released.
 *
 *
 * @subsection v304 V3.04
 * 10 Jan 2006, Change include; (1) added amplitude control to engineering mode,
 *                                     (2) corrected number of bytes reported in log,
 *                                     (3) add engineering command to set high rate position reports (5 seconds), and
 *                                     (4) corrected size of LOG_COORD block when searching for end of log.
 *
 * @subsection v303 V3.03
 * 15 Sep 2005, Change include; (1) removed AD9954 setting SDIO as input pin, 
 *                                     (2) additional comments and Doxygen tags,
 *                                     (3) integration and test code calculates DDS FTW,
 *                                     (4) swapped bus and reference analog input ports (hardware change),
 *                                     (5) added message that indicates we are reading flash log and reports length,
 *                                     (6) report bus voltage in 10mV steps, and
 *                                     (7) change log type enumerated values to XORed nibbles for error detection.
 *
 *
 * @subsection v302 V3.02
 * 6 Apr 2005, Change include; (1) corrected tracked satellite count in NMEA-0183 $GPGGA message,
 *                                    (2) Doxygen documentation clean up and additions, and
 *                                    (3) added integration and test code to baseline.
 *
 * 
 * @subsection v301 V3.01
 * 13 Jan 2005, Renamed project and files to Pico Beacon.
 *
 *
 * @subsection v300 V3.00
 * 15 Nov 2004, Change include; (1) Micro Beacon extreme hardware changes including integral transmitter,
 *                                     (2) PIC18F2525 processor,
 *                                     (3) AD9954 DDS support functions,
 *                                     (4) added comments and formatting for doxygen,
 *                                     (5) process GPS data with native Motorola protocol,
 *                                     (6) generate plain text $GPGGA and $GPRMC messages,
 *                                     (7) power down GPS 5 hours after lock,
 *                                     (8) added flight data recorder, and
 *                                     (9) added diagnostics terminal mode.
 *
 * 
 * @subsection v201 V2.01
 * 30 Jan 2004, Change include; (1) General clean up of in-line documentation, and 
 *                                     (2) changed temperature resolution to 0.1 degrees F.
 *
 * 
 * @subsection v200 V2.00
 * 26 Oct 2002, Change include; (1) Micro Beacon II hardware changes including PIC18F252 processor,
 *                                     (2) serial EEPROM, 
 *                                     (3) GPS power control, 
 *                                     (4) additional ADC input, and 
 *                                     (5) LM60 temperature sensor.                            
 *
 *
 * @subsection v101 V1.01
 * 5 Dec 2001, Change include; (1) Changed startup message, and 
 *                                    (2) applied SEPARATE pragma to several methods for memory usage.
 *
 *
 * @subsection v100 V1.00
 * 25 Sep 2001, Initial release.  Flew ANSR-3 and ANSR-4.
 * 


 *
 *
 * @section copyright_sec Copyright
 *
 * Copyright (c) 2001-2009 Michael Gray, KD7LMO


 *
 *
 * @section gpl_sec GNU General Public License
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *  


 * 
 * 
 * @section design Design Details
 *
 * Provides design details on a variety of the components that make up the Pico Beacon.
 *
 *  @subpage power
 */

/**
 *  @page power Power Consumption
 *
 *  Measured DC power consumption.
 * 
 *  3VDC prime power current 

 *
 *    7mA Held in reset 

 *   18mA Processor running, all I/O off 

 *  110mA GPS running 

 *  120mA GPS running w/antenna 

 *  250mA DDS running and GPS w/antenna 

 *  420mA DDS running, GPS w/antenna, and PA chain on with no RF 

 *  900mA Transmit 

 *
 */

#ifndef AO_APRS_TEST
#include <ao.h>
#endif

#include <ao_aprs.h>

typedef int bool_t;
typedef int32_t int32;
#define false 0
#define true 1

// Public methods, constants, and data structures for each class.

/// Operational modes of the AD9954 DDS for the ddsSetMode function.
typedef enum
{
    /// Device has not been initialized.
    DDS_MODE_NOT_INITIALIZED,

    /// Device in lowest power down mode.
    DDS_MODE_POWERDOWN,

    /// Generate FM modulated audio tones.
    DDS_MODE_AFSK,

    /// Generate true FSK tones.
    DDS_MODE_FSK
}  DDS_MODE;

void ddsInit();
void ddsSetAmplitude (uint8_t amplitude);
void ddsSetOutputScale (uint16_t amplitude);
void ddsSetFSKFreq (uint32_t ftw0, uint32_t ftw1);
void ddsSetFreq (uint32_t freq);
void ddsSetFTW (uint32_t ftw);
void ddsSetMode (DDS_MODE mode);

/// Type of GPS fix.
typedef enum
{
    /// No GPS FIX
    GPS_NO_FIX,

    /// 2D (Latitude/Longitude) fix.
    GPS_2D_FIX,

    /// 3D (Latitude/Longitude/Altitude) fix.
    GPS_3D_FIX
}  GPS_FIX_TYPE;

/// GPS Position information.
typedef struct 
{
    /// Flag that indicates the position information has been updated since it was last checked.
    bool_t updateFlag;

    /// Month in UTC time.
    uint8_t month;

    /// Day of month in UTC time.
    uint8_t day;

    /// Hours in UTC time.
    uint8_t hours;

    /// Minutes in UTC time.
    uint8_t minutes;

    /// Seconds in UTC time.
    uint8_t seconds;

    /// Year in UTC time.
    uint16_t year;

    /// Latitude in milli arc-seconds where + is North, - is South.
    int32_t latitude;

    /// Longitude in milli arc-seconds where + is East, - is West.
    int32_t longitude;

    /// Altitude in cm
    int32_t altitudeCM;

    /// Calculated altitude in feet
    int32_t altitudeFeet;

    /// 3D speed in cm/second.
    uint16_t vSpeed;

    /// 2D speed in cm/second.
    uint16_t hSpeed;

    /// Heading units of 0.1 degrees.
    uint16_t heading;

    /// DOP (Dilution of Precision)
    uint16_t dop;

    /// 16-bit number that represents status of GPS engine.
    uint16_t status;

    /// Number of tracked satellites used in the fix position.
    uint8_t trackedSats;

    /// Number of visible satellites.
    uint8_t visibleSats;
} GPSPOSITION_STRUCT;

GPSPOSITION_STRUCT gpsPosition;

void gpsInit();
bool_t gpsIsReady();
GPS_FIX_TYPE gpsGetFixType();
int32_t gpsGetPeakAltitude();
void gpsPowerOn();
bool_t gpsSetup();
void gpsUpdate();

uint16_t sysCRC16(uint8_t *buffer, uint8_t length, uint16_t crc);

uint8_t timeGetTicks();
void timeInit();
void timeSetDutyCycle (uint8_t dutyCycle);
void timeUpdate();

/// Operational modes of the TNC for the tncSetMode function.
typedef enum
{
    /// No operation waiting for setup and configuration.
    TNC_MODE_STANDBY, 

    /// 1200 bps using A-FSK (Audio FSK) tones.
    TNC_MODE_1200_AFSK,

    /// 9600 bps using true FSK tones.
    TNC_MODE_9600_FSK
} TNC_DATA_MODE;

void tncInit();
bool_t tncIsFree();
void tncHighRate(bool_t state);
void tncSetMode (TNC_DATA_MODE dataMode);
void tnc1200TimerTick();
void tnc9600TimerTick();
void tncTxByte (uint8_t value);
void tncTxPacket(TNC_DATA_MODE dataMode);

/** @} */

/**
 *  @defgroup DDS AD9954 DDS (Direct Digital Synthesizer)
 *
 *  Functions to control the Analog Devices AD9954 DDS.
 *
 *  @{
 */

/// AD9954 CFR1 - Control functions including RAM, profiles, OSK, sync, sweep, SPI, and power control settings.
#define DDS_AD9954_CFR1 0x00

/// AD9954 CFR2 - Control functions including sync, PLL multiplier, VCO range, and charge pump current.
#define DDS_AD9954_CFR2 0x01

/// AD9954 ASF - Auto ramp rate speed control and output scale factor (0x0000 to 0x3fff).
#define DDS_AD9954_ASF 0x02

/// AD9954 ARR - Amplitude ramp rate for OSK function.
#define DDS_AD9954_ARR 0x03

/// AD9954 FTW0 - Frequency tuning word 0.
#define DDS_AD9954_FTW0 0x04

/// AD9954 FTW1 - Frequency tuning word 1
#define DDS_AD9954_FTW1 0x06

/// AD9954 NLSCW - Negative Linear Sweep Control Word used for spectral shaping in FSK mode
#define DDS_AD9954_NLSCW 0x07

/// AD9954 PLSCW - Positive Linear Sweep Control Word used for spectral shaping in FSK mode
#define DDS_AD9954_PLSCW 0x08

/// AD9954 RSCW0 - RAM Segment Control Word 0
#define DDS_AD9954_RWCW0 0x07

/// AD9954 RSCW0 - RAM Segment Control Word 1
#define DDS_AD9954_RWCW1 0x08

/// AD9954 RAM segment
#define DDS_RAM 0x0b

/// Current operational mode.
DDS_MODE ddsMode;

/// Number of digits in DDS frequency to FTW conversion.
#define DDS_FREQ_TO_FTW_DIGITS 9

/// Array of multiplication factors used to convert frequency to the FTW.
const uint32_t DDS_MULT[DDS_FREQ_TO_FTW_DIGITS] = { 11, 7, 7, 3, 4, 8, 4, 9, 1 };

/// Array of divisors used to convert frequency to the FTW.
const uint32_t DDS_DIVISOR[DDS_FREQ_TO_FTW_DIGITS - 1] = { 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000 };

/// Lookup table to convert dB amplitude scale in 0.5 steps to a linear DDS scale factor.
const uint16_t DDS_AMP_TO_SCALE[] = 
{ 
    16383, 15467, 14601, 13785, 13013, 12286, 11598, 10949, 10337, 9759, 9213, 8697, 
    8211, 7752, 7318, 6909, 6522, 6157, 5813, 5488, 5181, 4891, 4617, 4359, 4115, 3885, 3668, 3463, 
    3269, 3086, 2913, 2750, 2597, 2451, 2314, 2185, 2062, 1947, 1838, 1735, 1638 
};


/// Frequency Word List - 4.0KHz FM frequency deviation at 81.15MHz  (445.950MHz)
const uint32_t freqTable[256] = 
{
    955418300, 955419456, 955420611, 955421765, 955422916, 955424065, 955425210, 955426351, 
    955427488, 955428618, 955429743, 955430861, 955431971, 955433073, 955434166, 955435249, 
    955436322, 955437385, 955438435, 955439474, 955440500, 955441513, 955442511, 955443495, 
    955444464, 955445417, 955446354, 955447274, 955448176, 955449061, 955449926, 955450773, 
    955451601, 955452408, 955453194, 955453960, 955454704, 955455426, 955456126, 955456803, 
    955457457, 955458088, 955458694, 955459276, 955459833, 955460366, 955460873, 955461354, 
    955461809, 955462238, 955462641, 955463017, 955463366, 955463688, 955463983, 955464250, 
    955464489, 955464701, 955464884, 955465040, 955465167, 955465266, 955465337, 955465380, 
    955465394, 955465380, 955465337, 955465266, 955465167, 955465040, 955464884, 955464701, 
    955464489, 955464250, 955463983, 955463688, 955463366, 955463017, 955462641, 955462238, 
    955461809, 955461354, 955460873, 955460366, 955459833, 955459276, 955458694, 955458088, 
    955457457, 955456803, 955456126, 955455426, 955454704, 955453960, 955453194, 955452408, 
    955451601, 955450773, 955449926, 955449061, 955448176, 955447274, 955446354, 955445417, 
    955444464, 955443495, 955442511, 955441513, 955440500, 955439474, 955438435, 955437385, 
    955436322, 955435249, 955434166, 955433073, 955431971, 955430861, 955429743, 955428618, 
    955427488, 955426351, 955425210, 955424065, 955422916, 955421765, 955420611, 955419456, 
    955418300, 955417144, 955415989, 955414836, 955413684, 955412535, 955411390, 955410249, 
    955409113, 955407982, 955406857, 955405740, 955404629, 955403528, 955402435, 955401351, 
    955400278, 955399216, 955398165, 955397126, 955396100, 955395088, 955394089, 955393105, 
    955392136, 955391183, 955390246, 955389326, 955388424, 955387540, 955386674, 955385827, 
    955385000, 955384192, 955383406, 955382640, 955381896, 955381174, 955380474, 955379797, 
    955379143, 955378513, 955377906, 955377324, 955376767, 955376235, 955375728, 955375246, 
    955374791, 955374362, 955373959, 955373583, 955373234, 955372912, 955372618, 955372350, 
    955372111, 955371900, 955371716, 955371560, 955371433, 955371334, 955371263, 955371220, 
    955371206, 955371220, 955371263, 955371334, 955371433, 955371560, 955371716, 955371900, 
    955372111, 955372350, 955372618, 955372912, 955373234, 955373583, 955373959, 955374362, 
    955374791, 955375246, 955375728, 955376235, 955376767, 955377324, 955377906, 955378513, 
    955379143, 955379797, 955380474, 955381174, 955381896, 955382640, 955383406, 955384192, 
    955385000, 955385827, 955386674, 955387540, 955388424, 955389326, 955390246, 955391183, 
    955392136, 955393105, 955394089, 955395088, 955396100, 955397126, 955398165, 955399216, 
    955400278, 955401351, 955402435, 955403528, 955404629, 955405740, 955406857, 955407982, 
    955409113, 955410249, 955411390, 955412535, 955413684, 955414836, 955415989, 955417144
};

/**
 *  Set DDS frequency tuning word.  The output frequency is equal to RefClock * (ftw / 2 ^ 32).
 *
 *  @param ftw Frequency Tuning Word
 */
void ddsSetFTW (uint32_t ftw)
{
    int	x = ftw - freqTable[0];
    putchar (x > 0 ? 0xc0 : 0x40);
}

/**
 *   Convert frequency in hertz to 32-bit DDS FTW (Frequency Tune Word).
 *
 *   @param freq frequency in Hertz
 *
 */
void ddsSetFreq(uint32_t freq)
{
    uint8_t i;
    uint32_t ftw;
    
    // To avoid rounding errors with floating point math, we do a long multiply on the data.
    ftw = freq * DDS_MULT[0];
    
    for (i = 0; i < DDS_FREQ_TO_FTW_DIGITS - 1; ++i)
        ftw += (freq * DDS_MULT[i+1]) / DDS_DIVISOR[i];
    
    ddsSetFTW (ftw);
}

/**
 *  Set DDS frequency tuning word for the FSK 0 and 1 values.  The output frequency is equal 
 *  to RefClock * (ftw / 2 ^ 32).
 *
 *  @param ftw0 frequency tuning word for the FSK 0 value
 *  @param ftw1 frequency tuning word for the FSK 1 value
 */
void ddsSetFSKFreq (uint32_t ftw0, uint32_t ftw1)
{
//	printf ("ftw0 %d ftw1 %d\n", ftw0, ftw1);
}

/** 
 *   Set the DDS to run in A-FSK, FSK, or PSK31 mode
 *
 *   @param mode DDS_MODE_APRS, DDS_MODE_PSK31, or DDS_MODE_HF_APRS constant
 */
void ddsSetMode (DDS_MODE mode)
{
//	printf ("mode %d\n", mode);
}

/** @} */

/**
 *  @defgroup GPS Motorola M12+ GPS Engine
 *
 *  Functions to control the Motorola M12+ GPS engine in native binary protocol mode.
 *
 *  @{
 */

/// The maximum length of a binary GPS engine message.
#define GPS_BUFFER_SIZE 50

/// GPS parse engine state machine values.
typedef enum
{
    /// 1st start character '@'
    GPS_START1,

    /// 2nd start character '@'
    GPS_START2,

    /// Upper case 'A' - 'Z' message type
    GPS_COMMAND1,

    /// Lower case 'a' - 'z' message type
    GPS_COMMAND2,

    /// 0 - xx bytes based on message type 'Aa'
    GPS_READMESSAGE,

    /// 8-bit checksum
    GPS_CHECKSUMMESSAGE,

    /// End of message - Carriage Return
    GPS_EOMCR,

    /// End of message - Line Feed
    GPS_EOMLF
} GPS_PARSE_STATE_MACHINE;

/// Index into gpsBuffer used to store message data.
uint8_t gpsIndex;

/// State machine used to parse the GPS message stream.
GPS_PARSE_STATE_MACHINE gpsParseState;

/// Buffer to store data as it is read from the GPS engine.
uint8_t gpsBuffer[GPS_BUFFER_SIZE]; 

/// Peak altitude detected while GPS is in 3D fix mode.
int32_t gpsPeakAltitude;

/// Checksum used to verify binary message from GPS engine.
uint8_t gpsChecksum;

/// Last verified GPS message received.
GPSPOSITION_STRUCT gpsPosition;

/**
 *   Get the type of fix.
 *
 *   @return gps fix type enumeration
 */
GPS_FIX_TYPE gpsGetFixType()
{
    // The upper 3-bits determine the fix type.
    switch (gpsPosition.status & 0xe000) 
    {
        case 0xe000:
            return GPS_3D_FIX;

        case 0xc000:
            return GPS_2D_FIX;
    
        default:
            return GPS_NO_FIX;
    } // END switch
}

/**
 *  Peak altitude detected while GPS is in 3D fix mode since the system was booted.
 *
 *  @return altitude in feet
 */
int32_t gpsGetPeakAltitude()
{
    return gpsPeakAltitude;
}

/** 
 *    Initialize the GPS subsystem.
 */
void gpsInit()
{
    // Initial parse state.
    gpsParseState = GPS_START1;

    // Assume we start at sea level.
    gpsPeakAltitude = 0;

    // Clear the structure that stores the position message.
    memset (&gpsPosition, 0, sizeof(GPSPOSITION_STRUCT));

    // Setup the timers used to measure the 1-PPS time period.
//    setup_timer_3(T3_INTERNAL | T3_DIV_BY_1);
//    setup_ccp2 (CCP_CAPTURE_RE | CCP_USE_TIMER3);
}

/**
 *   Determine if new GPS message is ready to process.  This function is a one shot and
 *   typically returns true once a second for each GPS position fix.
 *
 *   @return true if new message available; otherwise false
 */
bool_t gpsIsReady()
{
    return true;
    if (gpsPosition.updateFlag) 
    {
        gpsPosition.updateFlag = false;
        return true;
    } // END if

    return false;
}

/**
 *   Calculate NMEA-0183 message checksum of buffer that is length bytes long.
 *
 *   @param buffer pointer to data buffer.
 *   @param length number of bytes in buffer.
 *
 *   @return checksum of buffer
 */
uint8_t gpsNMEAChecksum (uint8_t *buffer, uint8_t length)
{
    uint8_t i, checksum;

    checksum = 0;

    for (i = 0; i < length; ++i)
        checksum ^= buffer[i];

    return checksum;
}

/**
 *   Verify the GPS engine is sending the @@Hb position report message.  If not,
 *   configure the GPS engine to send the desired report.
 *
 *   @return true if GPS engine operation; otherwise false
 */
bool_t gpsSetup()
{
    uint8_t startTime, retryCount;

    // We wait 10 seconds for the GPS engine to respond to our message request.
    startTime = timeGetTicks();
    retryCount = 0;

    while (++retryCount < 10) 
    {
        // Read the serial FIFO and process the GPS messages.
//        gpsUpdate();

        // If a GPS data set is available, then GPS is operational.
        if (gpsIsReady()) 
        {
//            timeSetDutyCycle (TIME_DUTYCYCLE_10);
            return true;
        }

        if (timeGetTicks() > startTime) 
        {
            puts ("@@Hb\001\053\015\012");
            startTime += 10;
        } // END if
            
    } // END while

    return false;
}

/**
 *   Parse the Motorola @@Hb (Short position/message) report.
 */
void gpsParsePositionMessage()
{
    // Convert the binary stream into data elements.  We will scale to the desired units
    // as the values are used.
    gpsPosition.updateFlag = true;

    gpsPosition.month = gpsBuffer[0];
    gpsPosition.day = gpsBuffer[1];
    gpsPosition.year = ((uint16_t) gpsBuffer[2] << 8) | gpsBuffer[3];
    gpsPosition.hours = gpsBuffer[4];
    gpsPosition.minutes = gpsBuffer[5];
    gpsPosition.seconds = gpsBuffer[6];
    gpsPosition.latitude = ((int32) gpsBuffer[11] << 24) | ((int32) gpsBuffer[12] << 16) | ((int32) gpsBuffer[13] << 8) | (int32) gpsBuffer[14];
    gpsPosition.longitude = ((int32) gpsBuffer[15] << 24) | ((int32) gpsBuffer[16] << 16) | ((int32) gpsBuffer[17] << 8) | gpsBuffer[18];
    gpsPosition.altitudeCM = ((int32) gpsBuffer[19] << 24) | ((int32) gpsBuffer[20] << 16) | ((int32) gpsBuffer[21] << 8) | gpsBuffer[22];
    gpsPosition.altitudeFeet = gpsPosition.altitudeCM * 100l / 3048l;
    gpsPosition.vSpeed = ((uint16_t) gpsBuffer[27] << 8) | gpsBuffer[28];
    gpsPosition.hSpeed = ((uint16_t) gpsBuffer[29] << 8) | gpsBuffer[30];
    gpsPosition.heading = ((uint16_t) gpsBuffer[31] << 8) | gpsBuffer[32];
    gpsPosition.dop = ((uint16_t) gpsBuffer[33] << 8) | gpsBuffer[34];
    gpsPosition.visibleSats = gpsBuffer[35];
    gpsPosition.trackedSats = gpsBuffer[36];
    gpsPosition.status = ((uint16_t) gpsBuffer[37] << 8) | gpsBuffer[38];

    // Update the peak altitude if we have a valid 3D fix.
    if (gpsGetFixType() == GPS_3D_FIX)
        if (gpsPosition.altitudeFeet > gpsPeakAltitude)
            gpsPeakAltitude = gpsPosition.altitudeFeet;
}

/**
 *  Turn on the GPS engine power and serial interface.
 */
void gpsPowerOn()
{
    // 3.0 VDC LDO control line.
//    output_high (IO_GPS_PWR);

}

/**
 *   Turn off the GPS engine power and serial interface.
 */
void gpsPowerOff()
{
    // 3.0 VDC LDO control line.
//    output_low (IO_GPS_PWR);
}

/** @} */


/**
 *  @defgroup sys System Library Functions
 *
 *  Generic system functions similiar to the run-time C library.
 *
 *  @{
 */

/**
 *    Calculate the CRC-16 CCITT of buffer that is length bytes long.
 *    The crc parameter allow the calculation on the CRC on multiple buffers.
 *
 *    @param buffer Pointer to data buffer.
 *    @param length number of bytes in data buffer
 *    @param crc starting value
 *
 *    @return CRC-16 of buffer[0 .. length]
 */
uint16_t sysCRC16(uint8_t *buffer, uint8_t length, uint16_t crc)
{
    uint8_t i, bit, value;

    for (i = 0; i < length; ++i) 
    {
        value = buffer[i];

        for (bit = 0; bit < 8; ++bit) 
        {
            crc ^= (value & 0x01);
            crc = ( crc & 0x01 ) ? ( crc >> 1 ) ^ 0x8408 : ( crc >> 1 );
            value = value >> 1;
        } // END for
    } // END for

    return crc ^ 0xffff;
}

/** @} */

/**
 *  @defgroup rtc Real Time Interrupt tick
 *
 *  Manage the built-in real time interrupt.  The interrupt clock PRI is 104uS (9600 bps).
 *
 *  @{
 */

/// A counter that ticks every 100mS.
uint8_t timeTicks;

/// Counts the number of 104uS interrupts for a 100mS time period.
uint16_t timeInterruptCount;

/// Counts the number of 100mS time periods in 1 second.
uint8_t time100ms;

/// System time in seconds.
uint8_t timeSeconds;

/// System time in minutes.
uint8_t timeMinutes;

/// System time in hours.
uint8_t timeHours;

/// Desired LED duty cycle 0 to 9 where 0 = 0% and 9 = 90%.
uint8_t timeDutyCycle;

/// Current value of the timer 1 compare register used to generate 104uS interrupt rate (9600bps).
uint16_t timeCompare;

/// 16-bit NCO where the upper 8-bits are used to index into the frequency generation table.
uint16_t timeNCO;

/// Audio tone NCO update step (phase).
uint16_t timeNCOFreq;

/// Counter used to deciminate down from the 104uS to 833uS interrupt rate.  (9600 to 1200 baud) 
uint8_t timeLowRateCount;

/// Current TNC mode (standby, 1200bps A-FSK, or 9600bps FSK)
TNC_DATA_MODE tncDataMode;

/// Flag set true once per second.
bool_t timeUpdateFlag;

/// Flag that indicate the flight time should run.
bool_t timeRunFlag;

/// The change in the CCP_1 register for each 104uS (9600bps) interrupt period.
#define TIME_RATE 125

/**
 *   Running 8-bit counter that ticks every 100mS.
 *
 *   @return 100mS time tick
 */
uint8_t timeGetTicks()
{
    return timeTicks;
}

/**
 *   Initialize the real-time clock.
 */
void timeInit()
{
    timeTicks = 0;
    timeInterruptCount = 0;
//    time100mS = 0;
    timeSeconds = 0;
    timeMinutes = 0;
    timeHours = 0;
    timeCompare = TIME_RATE;
    timeUpdateFlag = false;
    timeNCO = 0x00;
    timeLowRateCount = 0;
    timeNCOFreq = 0x2000;
    tncDataMode = TNC_MODE_STANDBY;  
    timeRunFlag = false;
}

/**
 *   Function return true once a second based on real-time clock.
 *
 *   @return true on one second tick; otherwise false
 */
bool_t timeIsUpdate()
{
    if (timeUpdateFlag) 
    {
        timeUpdateFlag = false;
        return true;
    } // END if

    return false;
}

/**
 *   Set a flag to indicate the flight time should run.  This flag is typically set when the payload
 *   lifts off.
 */
void timeSetRunFlag()
{
    timeRunFlag = true;
}

/**
 *   Timer interrupt handler called every 104uS (9600 times/second).
 */
void timeUpdate()
{
    // Setup the next interrupt for the operational mode.
    timeCompare += TIME_RATE;
//    CCP_1 = timeCompare;

    switch (tncDataMode) 
    {
        case TNC_MODE_STANDBY:
            break;

        case TNC_MODE_1200_AFSK:
            ddsSetFTW (freqTable[timeNCO >> 8]);

            timeNCO += timeNCOFreq;

            if (++timeLowRateCount == 8) 
            {
                timeLowRateCount = 0;
                tnc1200TimerTick();
            } // END if
            break;

        case TNC_MODE_9600_FSK:
            tnc9600TimerTick();
            break;
    } // END switch
}

/** @} */

/**
 *  @defgroup tnc TNC (Terminal Node Controller)
 *
 *  Functions that provide a subset of the TNC functions.
 *
 *  @{
 */

/// The number of start flag bytes to send before the packet message.  (360bits * 1200bps = 300mS)
#define TNC_TX_DELAY 45

/// The size of the TNC output buffer.
#define TNC_BUFFER_SIZE 80

/// States that define the current mode of the 1200 bps (A-FSK) state machine.
typedef enum
{
    /// Stand by state ready to accept new message.
    TNC_TX_READY,

    /// 0x7E bit stream pattern used to define start of APRS message.
    TNC_TX_SYNC,

    /// Transmit the AX.25 header that contains the source/destination call signs, APRS path, and flags.
    TNC_TX_HEADER,

    /// Transmit the message data.
    TNC_TX_DATA,

    /// Transmit the end flag sequence.
    TNC_TX_END
} TNC_TX_1200BPS_STATE;

/// Enumeration of the messages we can transmit. 
typedef enum
{
    /// Startup message that contains software version information.
    TNC_BOOT_MESSAGE,

    /// Plain text status message.
    TNC_STATUS,

    /// Message that contains GPS NMEA-0183 $GPGGA message.
    TNC_GGA,

    /// Message that contains GPS NMEA-0183 $GPRMC message.
    TNC_RMC
}  TNC_MESSAGE_TYPE;

/// AX.25 compliant packet header that contains destination, station call sign, and path.
/// 0x76 for SSID-11, 0x78 for SSID-12
uint8_t TNC_AX25_HEADER[30] = { 
    'A' << 1, 'P' << 1, 'R' << 1, 'S' << 1, ' ' << 1, ' ' << 1, 0x60, \
    'K' << 1, 'D' << 1, '7' << 1, 'S' << 1, 'Q' << 1, 'G' << 1, 0x76, \
    'G' << 1, 'A' << 1, 'T' << 1, 'E' << 1, ' ' << 1, ' ' << 1, 0x60, \
    'W' << 1, 'I' << 1, 'D' << 1, 'E' << 1, '3' << 1, ' ' << 1, 0x67, \
    0x03, 0xf0 };


/// The next bit to transmit.
uint8_t tncTxBit;

/// Current mode of the 1200 bps state machine.
TNC_TX_1200BPS_STATE tncMode;

/// Counter for each bit (0 - 7) that we are going to transmit.
uint8_t tncBitCount;

/// A shift register that holds the data byte as we bit shift it for transmit.
uint8_t tncShift;

/// Index into the APRS header and data array for each byte as we transmit it.
uint8_t tncIndex;

/// The number of bytes in the message portion of the AX.25 message.
uint8_t tncLength;

/// A copy of the last 5 bits we've transmitted to determine if we need to bit stuff on the next bit.
uint8_t tncBitStuff;

/// Pointer to TNC buffer as we save each byte during message preparation.
uint8_t *tncBufferPnt;

/// The type of message to tranmit in the next packet.
TNC_MESSAGE_TYPE tncPacketType;

/// Buffer to hold the message portion of the AX.25 packet as we prepare it.
uint8_t tncBuffer[TNC_BUFFER_SIZE];

/// Flag that indicates we want to transmit every 5 seconds.
bool_t tncHighRateFlag;

/** 
 *   Initialize the TNC internal variables.
 */
void tncInit()
{
    tncTxBit = 0;
    tncMode = TNC_TX_READY;
    tncPacketType = TNC_BOOT_MESSAGE;
    tncHighRateFlag = false;
}

/**
 *  Determine if the hardware if ready to transmit a 1200 baud packet.
 *
 *  @return true if ready; otherwise false
 */
bool_t tncIsFree()
{
    if (tncMode == TNC_TX_READY)
        return true;

    return false;
}

void tncHighRate(bool_t state)
{
    tncHighRateFlag = state;
}

/**
 *   Configure the TNC for the desired data mode.
 *
 *    @param dataMode enumerated type that specifies 1200bps A-FSK or 9600bps FSK
 */ 
void tncSetMode(TNC_DATA_MODE dataMode)
{
    switch (dataMode) 
    {
        case TNC_MODE_1200_AFSK:
            ddsSetMode (DDS_MODE_AFSK);
            break;

        case TNC_MODE_9600_FSK:
            ddsSetMode (DDS_MODE_FSK);

            // FSK tones at 445.947 and 445.953 MHz
            ddsSetFSKFreq (955382980, 955453621);
            break;
    	case TNC_MODE_STANDBY:
	    break;
    } // END switch

    tncDataMode = dataMode; 
}

/**
 *  Determine if the seconds value timeSeconds is a valid time slot to transmit
 *  a message.  Time seconds is in UTC.
 *
 *  @param timeSeconds UTC time in seconds
 *
 *  @return true if valid time slot; otherwise false
 */
bool_t tncIsTimeSlot (uint8_t timeSeconds)
{
    if (tncHighRateFlag)
    {
        if ((timeSeconds % 5) == 0)
            return true;

        return false;
    } // END if

    switch (timeSeconds) 
    {
        case 0:
        case 15:
        case 30:
        case 45:
            return true;

        default:
            return false;
    } // END switch
}

/**
 *   Method that is called every 833uS to transmit the 1200bps A-FSK data stream.
 *   The provides the pre and postamble as well as the bit stuffed data stream.
 */
void tnc1200TimerTick()
{
    // Set the A-FSK frequency.
    if (tncTxBit == 0x00)
        timeNCOFreq = 0x2000;
    else
        timeNCOFreq = 0x3aab;

    switch (tncMode) 
    {
        case TNC_TX_READY:
            // Generate a test signal alteranting between high and low tones.
            tncTxBit = (tncTxBit == 0 ? 1 : 0);
            break;

        case TNC_TX_SYNC:
            // The variable tncShift contains the lastest data byte.
            // NRZI enocde the data stream.
            if ((tncShift & 0x01) == 0x00) {
                if (tncTxBit == 0)
                    tncTxBit = 1;
                else
                    tncTxBit = 0;
	    }
                    
            // When the flag is done, determine if we need to send more or data.
            if (++tncBitCount == 8) 
            {
                tncBitCount = 0;
                tncShift = 0x7e;

                // Once we transmit x mS of flags, send the data.
                // txDelay bytes * 8 bits/byte * 833uS/bit = x mS
                if (++tncIndex == TNC_TX_DELAY) 
                {
                    tncIndex = 0;
                    tncShift = TNC_AX25_HEADER[0];
                    tncBitStuff = 0;
                    tncMode = TNC_TX_HEADER;
                } // END if
            } else
                tncShift = tncShift >> 1;
            break;

        case TNC_TX_HEADER:
            // Determine if we have sent 5 ones in a row, if we have send a zero.
            if (tncBitStuff == 0x1f) 
            {
                if (tncTxBit == 0)
                    tncTxBit = 1;
                else
                    tncTxBit = 0;

                tncBitStuff = 0x00;
                return;
            }    // END if

            // The variable tncShift contains the lastest data byte.
            // NRZI enocde the data stream.
            if ((tncShift & 0x01) == 0x00) {
                if (tncTxBit == 0)
                    tncTxBit = 1;
                else
                    tncTxBit = 0;
	    }

            // Save the data stream so we can determine if bit stuffing is 
            // required on the next bit time.
            tncBitStuff = ((tncBitStuff << 1) | (tncShift & 0x01)) & 0x1f;

            // If all the bits were shifted, get the next byte.
            if (++tncBitCount == 8) 
            {
                tncBitCount = 0;

                // After the header is sent, then send the data.
                if (++tncIndex == sizeof(TNC_AX25_HEADER)) 
                {
                    tncIndex = 0;
                    tncShift = tncBuffer[0];
                    tncMode = TNC_TX_DATA;
                } else
                    tncShift = TNC_AX25_HEADER[tncIndex];

            } else
                tncShift = tncShift >> 1;

            break;

        case TNC_TX_DATA:
            // Determine if we have sent 5 ones in a row, if we have send a zero.
            if (tncBitStuff == 0x1f) 
            {
                if (tncTxBit == 0)
                    tncTxBit = 1;
                else
                    tncTxBit = 0;

                tncBitStuff = 0x00;
                return;
            }    // END if

            // The variable tncShift contains the lastest data byte.
            // NRZI enocde the data stream.
            if ((tncShift & 0x01) == 0x00) {
                if (tncTxBit == 0)
                    tncTxBit = 1;
                else
                    tncTxBit = 0;
	    }

            // Save the data stream so we can determine if bit stuffing is 
            // required on the next bit time.
            tncBitStuff = ((tncBitStuff << 1) | (tncShift & 0x01)) & 0x1f;

            // If all the bits were shifted, get the next byte.
            if (++tncBitCount == 8) 
            {
                tncBitCount = 0;

                // If everything was sent, transmit closing flags.
                if (++tncIndex == tncLength) 
                {
                    tncIndex = 0;
                    tncShift = 0x7e;
                    tncMode = TNC_TX_END;
                } else
                    tncShift = tncBuffer[tncIndex];

            } else
                tncShift = tncShift >> 1;

            break;

        case TNC_TX_END:
            // The variable tncShift contains the lastest data byte.
            // NRZI enocde the data stream. 
            if ((tncShift & 0x01) == 0x00) {
                if (tncTxBit == 0)
                    tncTxBit = 1;
                else
                    tncTxBit = 0;
	    }

            // If all the bits were shifted, get the next one.
            if (++tncBitCount == 8) 
            {
                tncBitCount = 0;
                tncShift = 0x7e;
    
                // Transmit two closing flags.
                if (++tncIndex == 2) 
                {
                    tncMode = TNC_TX_READY;

                    // Tell the TNC time interrupt to stop generating the frequency words.
                    tncDataMode = TNC_MODE_STANDBY;

                    // Key off the DDS.
//                    output_low (IO_OSK);
//                    output_low (IO_PTT);
                    ddsSetMode (DDS_MODE_POWERDOWN);

                    return;
                } // END if
            } else
                tncShift = tncShift >> 1;

            break;
    } // END switch
}

/**
 *   Method that is called every 104uS to transmit the 9600bps FSK data stream.
 */
void tnc9600TimerTick()
{

}

/**
 *    Write character to the TNC buffer.  Maintain the pointer
 *    and length to the buffer.  The pointer tncBufferPnt and tncLength
 *    must be set before calling this function for the first time.
 * 
 *    @param character to save to telemetry buffer
 */
void tncTxByte (uint8_t character)
{
    *tncBufferPnt++ = character;
    ++tncLength;
}

static void
tncPrintf(char *fmt, ...)
{
    va_list	ap;
    int		c;

    va_start(ap, fmt);
    c = vsprintf((char *) tncBufferPnt, fmt, ap);
    if (*fmt == '\015')
	fprintf (stderr, "\n");
    else
	vfprintf(stderr, fmt, ap);
    va_end(ap);
    tncBufferPnt += c;
    tncLength += c;
}

/**
 *   Generate the plain text position packet. Data is written through the tncTxByte
 *   callback function
 */
void tncPositionPacket(void)
{
    int32_t	latitude = 45.4694766 * 10000000;
    int32_t	longitude = -122.7376250 * 10000000;
    uint32_t	altitude = 10000;
    uint16_t	lat_deg;
    uint16_t	lon_deg;
    uint16_t	lat_min;
    uint16_t	lat_frac;
    uint16_t	lon_min;
    uint16_t	lon_frac;

    char	lat_sign = 'N', lon_sign = 'E';

    if (latitude < 0) {
	lat_sign = 'S';
	latitude = -latitude;
    }

    if (longitude < 0) {
	lon_sign = 'W';
	longitude = -longitude;
    }

    lat_deg = latitude / 10000000;
    latitude -= lat_deg * 10000000;
    latitude *= 60;
    lat_min = latitude / 10000000;
    latitude -= lat_min * 10000000;
    lat_frac = (latitude + 50000) / 100000;

    lon_deg = longitude / 10000000;
    longitude -= lon_deg * 10000000;
    longitude *= 60;
    lon_min = longitude / 10000000;
    longitude -= lon_min * 10000000;
    lon_frac = (longitude + 50000) / 100000;

    tncPrintf ("=%02u%02u.%02u%c\\%03u%02u.%02u%cO /A=%06u\015",
	       lat_deg, lat_min, lat_frac, lat_sign,
	       lon_deg, lon_min, lon_frac, lon_sign,
	       altitude * 100 / 3048);
}

/** 
 *    Prepare an AX.25 data packet.  Each time this method is called, it automatically
 *    rotates through 1 of 3 messages.
 *
 *    @param dataMode enumerated type that specifies 1200bps A-FSK or 9600bps FSK
 */
void tncTxPacket(TNC_DATA_MODE dataMode)
{
    uint16_t crc;

    // Only transmit if there is not another message in progress.
    if (tncMode != TNC_TX_READY)
        return;

    // Configure the DDS for the desired operational.
    tncSetMode (dataMode);

    // Set a pointer to our TNC output buffer.
    tncBufferPnt = tncBuffer;

    // Set the message length counter.
    tncLength = 0;

    tncPositionPacket();

    // Calculate the CRC for the header and message.
    crc = sysCRC16(TNC_AX25_HEADER, sizeof(TNC_AX25_HEADER), 0xffff);
    crc = sysCRC16(tncBuffer, tncLength, crc ^ 0xffff);

    // Save the CRC in the message.
    *tncBufferPnt++ = crc & 0xff;
    *tncBufferPnt = (crc >> 8) & 0xff;

    // Update the length to include the CRC bytes.
    tncLength += 2;

    // Prepare the variables that are used in the real-time clock interrupt.
    tncBitCount = 0;
    tncShift = 0x7e;
    tncTxBit = 0;
    tncIndex = 0;
    tncMode = TNC_TX_SYNC;

    // Turn on the PA chain.
//    output_high (IO_PTT);

    // Wait for the PA chain to power up.
//    delay_ms (10);

    // Key the DDS.
//    output_high (IO_OSK);

    // Log the battery and reference voltage just after we key the transmitter.
//    sysLogVoltage();
    while (tncMode != TNC_TX_READY)
	timeUpdate();
}

/** @} */