summaryrefslogtreecommitdiff
path: root/src/drivers/ao_aprs.c
blob: 79cea49afbaa87028986e39e03a694a69f81964f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
/** 
 * http://ad7zj.net/kd7lmo/aprsbeacon_code.html
 *
 * @mainpage Pico Beacon
 *
 * @section overview_sec Overview
 *
 * The Pico Beacon is an APRS based tracking beacon that operates in the UHF 420-450MHz band.  The device utilizes a 
 * Microchip PIC 18F2525 embedded controller, Motorola M12+ GPS engine, and Analog Devices AD9954 DDS.  The device is capable
 * of generating a 1200bps A-FSK and 9600 bps FSK AX.25 compliant APRS (Automatic Position Reporting System) message.


 *
 * @section history_sec Revision History
 *
 * @subsection v305 V3.05
 * 23 Dec 2006, Change include; (1) change printf format width to conform to ANSI standard when new CCS 4.xx compiler released.
 *
 *
 * @subsection v304 V3.04
 * 10 Jan 2006, Change include; (1) added amplitude control to engineering mode,
 *                                     (2) corrected number of bytes reported in log,
 *                                     (3) add engineering command to set high rate position reports (5 seconds), and
 *                                     (4) corrected size of LOG_COORD block when searching for end of log.
 *
 * @subsection v303 V3.03
 * 15 Sep 2005, Change include; (1) removed AD9954 setting SDIO as input pin, 
 *                                     (2) additional comments and Doxygen tags,
 *                                     (3) integration and test code calculates DDS FTW,
 *                                     (4) swapped bus and reference analog input ports (hardware change),
 *                                     (5) added message that indicates we are reading flash log and reports length,
 *                                     (6) report bus voltage in 10mV steps, and
 *                                     (7) change log type enumerated values to XORed nibbles for error detection.
 *
 *
 * @subsection v302 V3.02
 * 6 Apr 2005, Change include; (1) corrected tracked satellite count in NMEA-0183 $GPGGA message,
 *                                    (2) Doxygen documentation clean up and additions, and
 *                                    (3) added integration and test code to baseline.
 *
 * 
 * @subsection v301 V3.01
 * 13 Jan 2005, Renamed project and files to Pico Beacon.
 *
 *
 * @subsection v300 V3.00
 * 15 Nov 2004, Change include; (1) Micro Beacon extreme hardware changes including integral transmitter,
 *                                     (2) PIC18F2525 processor,
 *                                     (3) AD9954 DDS support functions,
 *                                     (4) added comments and formatting for doxygen,
 *                                     (5) process GPS data with native Motorola protocol,
 *                                     (6) generate plain text $GPGGA and $GPRMC messages,
 *                                     (7) power down GPS 5 hours after lock,
 *                                     (8) added flight data recorder, and
 *                                     (9) added diagnostics terminal mode.
 *
 * 
 * @subsection v201 V2.01
 * 30 Jan 2004, Change include; (1) General clean up of in-line documentation, and 
 *                                     (2) changed temperature resolution to 0.1 degrees F.
 *
 * 
 * @subsection v200 V2.00
 * 26 Oct 2002, Change include; (1) Micro Beacon II hardware changes including PIC18F252 processor,
 *                                     (2) serial EEPROM, 
 *                                     (3) GPS power control, 
 *                                     (4) additional ADC input, and 
 *                                     (5) LM60 temperature sensor.                            
 *
 *
 * @subsection v101 V1.01
 * 5 Dec 2001, Change include; (1) Changed startup message, and 
 *                                    (2) applied SEPARATE pragma to several methods for memory usage.
 *
 *
 * @subsection v100 V1.00
 * 25 Sep 2001, Initial release.  Flew ANSR-3 and ANSR-4.
 * 


 *
 *
 * @section copyright_sec Copyright
 *
 * Copyright (c) 2001-2009 Michael Gray, KD7LMO


 *
 *
 * @section gpl_sec GNU General Public License
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *  


 * 
 * 
 * @section design Design Details
 *
 * Provides design details on a variety of the components that make up the Pico Beacon.
 *
 *  @subpage power
 */

/**
 *  @page power Power Consumption
 *
 *  Measured DC power consumption.
 * 
 *  3VDC prime power current 

 *
 *    7mA Held in reset 

 *   18mA Processor running, all I/O off 

 *  110mA GPS running 

 *  120mA GPS running w/antenna 

 *  250mA DDS running and GPS w/antenna 

 *  420mA DDS running, GPS w/antenna, and PA chain on with no RF 

 *  900mA Transmit 

 *
 */

// Hardware specific configuration.
#include <18f2525.h>
#device ADC=10

// NOTE: Even though we are using an external clock, we set the HS oscillator mode to
//       make the PIC 18F252 work with our external clock which is a clipped 1V P-P sine wave.
#fuses HS,NOWDT,NOPROTECT,NOPUT,NOBROWNOUT,NOLVP

// C runtime library definitions.
#include 
#include 

// These compiler directives set the clock, SPI/I2C ports, and I/O configuration.

// TCXO frequency
#use delay(clock=19200000)

// Engineering and data extracation port.
#use rs232(baud=57600, xmit=PIN_B7, rcv=PIN_B6, STREAM=PC_HOST)

// GPS engine 
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)

#use i2c (master, scl=PIN_C3, sda=PIN_C4)

#use fast_io(A)
#use fast_io(B)
#use fast_io(C)

// We define types that are used for all variables.  These are declared
// because each processor has a different sizes for int and long.
// The PIC compiler defines int8_t, int16_t, and int32_t.

/// Boolean value { false, true }
typedef boolean bool_t;

/// Signed 8-bit number in the range -128 through 127.
typedef signed int8 int8_t;

/// Unsigned 8-bit number in the range 0 through 255.
typedef unsigned int8 uint8_t;

/// Signed 16-bit number in the range -32768 through 32767.
typedef signed int16 int16_t;

/// Unsigned 16-bit number in the range 0 through 65535.
typedef unsigned int16 uint16_t;

/// Signed 32-bit number in the range -2147483648 through 2147483647.
typedef signed int32 int32_t;

/// Unsigned 32-bit number in the range 0 through 4294967296.
typedef unsigned int32 uint32_t;

// Function and structure prototypes.  These are declared at the start of
// the file much like a C++ header file.

// Map I/O pin names to hardware pins.

/// Heartbeat LED - Port A2
#define IO_LED PIN_A2

/// AD9954 DDS Profile Select 0 - Port A3
#define IO_PS0 PIN_A3

/// UHF amplifier and PA chain - Port A4
#define IO_PTT PIN_A4

/// AD9954 DDS Update - Port A5
#define IO_UPDATE PIN_A5

/// AD9954 CS (Chip Select) - Port B0
#define IO_CS PIN_B0

/// GPS Engine Power - Port B1
#define IO_GPS_PWR PIN_B1

/// AD9954 DDS Profile Select 1 - Port C0
#define IO_PS1 PIN_C0

/// AD9954 DDS OSK (Output Shift Key) - Port C2
#define IO_OSK PIN_C2

/// GPS engine serial transmit pin - Port C6
#define IO_GPS_TXD PIN_C6

// Public methods, constants, and data structures for each class.

/// Operational modes of the AD9954 DDS for the ddsSetMode function.
enum DDS_MODE
{
    /// Device has not been initialized.
    DDS_MODE_NOT_INITIALIZED,

    /// Device in lowest power down mode.
    DDS_MODE_POWERDOWN,

    /// Generate FM modulated audio tones.
    DDS_MODE_AFSK,

    /// Generate true FSK tones.
    DDS_MODE_FSK
};

void ddsInit();
void ddsSetAmplitude (uint8_t amplitude);
void ddsSetOutputScale (uint16_t amplitude);
void ddsSetFSKFreq (uint32_t ftw0, uint32_t ftw1);
void ddsSetFreq (uint32_t freq);
void ddsSetFTW (uint32_t ftw);
void ddsSetMode (DDS_MODE mode);

void flashErase();
uint8_t flashGetByte ();
void flashReadBlock(uint32_t address, uint8_t *block, uint16_t length);
void flashSendByte(uint8_t value);
void flashSendAddress(uint32_t address);
void flashWriteBlock(uint32_t address, uint8_t *block, uint8_t length);

/// Type of GPS fix.
enum GPS_FIX_TYPE 
{
    /// No GPS FIX
    GPS_NO_FIX,

    /// 2D (Latitude/Longitude) fix.
    GPS_2D_FIX,

    /// 3D (Latitude/Longitude/Altitude) fix.
    GPS_3D_FIX
};

/// GPS Position information.
typedef struct 
{
    /// Flag that indicates the position information has been updated since it was last checked.
    bool_t updateFlag;

    /// Month in UTC time.
    uint8_t month;

    /// Day of month in UTC time.
    uint8_t day;

    /// Hours in UTC time.
    uint8_t hours;

    /// Minutes in UTC time.
    uint8_t minutes;

    /// Seconds in UTC time.
    uint8_t seconds;

    /// Year in UTC time.
    uint16_t year;

    /// Latitude in milli arc-seconds where + is North, - is South.
    int32_t latitude;

    /// Longitude in milli arc-seconds where + is East, - is West.
    int32_t longitude;

    /// Altitude in cm
    int32_t altitudeCM;

    /// Calculated altitude in feet
    int32_t altitudeFeet;

    /// 3D speed in cm/second.
    uint16_t vSpeed;

    /// 2D speed in cm/second.
    uint16_t hSpeed;

    /// Heading units of 0.1 degrees.
    uint16_t heading;

    /// DOP (Dilution of Precision)
    uint16_t dop;

    /// 16-bit number that represents status of GPS engine.
    uint16_t status;

    /// Number of tracked satellites used in the fix position.
    uint8_t trackedSats;

    /// Number of visible satellites.
    uint8_t visibleSats;
} GPSPOSITION_STRUCT;

void gpsInit();
bool_t gpsIsReady();
GPS_FIX_TYPE gpsGetFixType();
int32_t gpsGetPeakAltitude();
void gpsPowerOn();
bool_t gpsSetup();
void gpsUpdate();

int16_t lm92GetTemp();

/// Define the log record types.
enum LOG_TYPE 
{
    /// Time stamp the log was started.
    LOG_BOOTED = 0xb4,

    /// GPS coordinates.
    LOG_COORD = 0xa5,

    /// Temperature
    LOG_TEMPERATURE = 0x96,

    /// Bus voltage.
    LOG_VOLTAGE = 0x87
};

void logInit();
uint32_t logGetAddress();
void logType (LOG_TYPE type);
void logUint8 (uint8_t value);
void logInt16 (int16_t value);

bool_t serialHasData();
void serialInit();
uint8_t serialRead();
void serialUpdate();

uint16_t sysCRC16(uint8_t *buffer, uint8_t length, uint16_t crc);
void sysInit();
void sysLogVoltage();

/// 0% duty cycle (LED Off) constant for function timeSetDutyCycle
#define TIME_DUTYCYCLE_0 0

/// 10% duty cycle constant for function timeSetDutyCycle
#define TIME_DUTYCYCLE_10 1

/// 70% duty cycle constant for function timeSetDutyCycle
#define TIME_DUTYCYCLE_70 7

uint8_t timeGetTicks();
void timeInit();
void timeSetDutyCycle (uint8_t dutyCycle);
void timeUpdate();

/// Operational modes of the TNC for the tncSetMode function.
enum TNC_DATA_MODE
{
    /// No operation waiting for setup and configuration.
    TNC_MODE_STANDBY, 

    /// 1200 bps using A-FSK (Audio FSK) tones.
    TNC_MODE_1200_AFSK,

    /// 9600 bps using true FSK tones.
    TNC_MODE_9600_FSK
};

void tncInit();
bool_t tncIsFree();
void tncHighRate(bool_t state);
void tncSetMode (TNC_DATA_MODE dataMode);
void tnc1200TimerTick();
void tnc9600TimerTick();
void tncTxByte (uint8_t value);
void tncTxPacket(TNC_DATA_MODE dataMode);

/**
 *  @defgroup ADC Analog To Digital Converter
 *
 *  Control and manage the on board PIC A/D converter.
 *
 *  @{
 */

/// Filtered voltages using a single pole, low pass filter.
uint16_t adcMainBusVolt;

/// PIC ADC Channel number of the reference voltage.
#define ADC_REF 0

/// PIC ADC Channel number of the main bus voltage.
#define ADC_MAINBUS 1

/// Input diode drop in units of 0.01 volts.
#define MAIN_BUS_VOLT_OFFSET 20

/**
 *  Intialize the ADC subsystem.
 */
void adcInit()
{
    // Setup the ADC.
    setup_adc_ports(AN0_TO_AN1);
    setup_adc( ADC_CLOCK_DIV_32 );

    // Zero the ADC filters.
    adcMainBusVolt = 0;
}

/**
 *   Filtered main bus voltage in 10mV resolution.
 *
 *   @return voltage in 10mV steps
 */
uint16_t adcGetMainBusVolt()
{
    uint32_t volts;

    volts = (uint32_t) (adcMainBusVolt >> 3);

    volts = (volts * 330l) / 1023l;

    return (uint16_t) volts + MAIN_BUS_VOLT_OFFSET;
}

/** 
 *   Get the current ADC value for the main bus voltage.
 *
 *   @return ADC value in the range 0 to 1023
 */
uint16_t adcRawBusVolt()
{
    set_adc_channel(ADC_MAINBUS);
    delay_us(50);
    return read_adc();
}

/** 
 *   Get the current ADC value for the reference source voltage.
 *
 *   @return ADC value in the range 0 to 1023
 */
uint16_t adcRawRefVolt()
{
    set_adc_channel(ADC_REF);
    delay_us(50);
    return read_adc();
}

/**
 *   Read and filter the ADC channels for bus voltages.
 */
void adcUpdate(void)
{
    // Filter the bus voltage using a single pole low pass filter.
    set_adc_channel(ADC_MAINBUS);
    delay_us(50);
    adcMainBusVolt = read_adc() + adcMainBusVolt - (adcMainBusVolt >> 3);
}

/** @} */


/**
 *  @defgroup diag Diagnostics and Control
 *
 *  Functions for diagnostics and control of the hardware and flight data recorder.
 *
 *  @{
 */

/// Number of bytes per line to display when reading flight data recorder.
#define DIAG_BYTES_PER_LINE 32

/**
 *   Process the command to erase the data logger flash.
 */
void diagEraseFlash()
{
    // Confirm we want to erase the flash with the key sequence 'yes' .
    fprintf (PC_HOST, "Are you sure (yes)?  ");

    if (fgetc(PC_HOST) != 'y')
        return;

    if (fgetc(PC_HOST) != 'e')
        return;

    if (fgetc(PC_HOST) != 's')
        return;

    if (fgetc(PC_HOST) != 13)
        return;

    // User feedback and erase the part.
    fprintf (PC_HOST, "Erasing flash...");

    flashErase();

    fprintf (PC_HOST, "done.\n\r");
}

/**
 *   Display the engineering mode menu.
 */
void diagMenu()
{
    // User interface.
    fprintf (PC_HOST, "Options: (e)rase Flash, (r)ead Flash\n\r");
    fprintf (PC_HOST, "         Toggle (L)ED\n\r");
    fprintf (PC_HOST, "         (P)TT - Push To Transmit\n\r");
    fprintf (PC_HOST, "         (f)requencey down, (F)requency up - 1KHz step\n\r");
    fprintf (PC_HOST, "         (c)hannel down, (C)hannel up - 25KHz step\n\r");
    fprintf (PC_HOST, "         (a)mplitude down, (A)mplitude up - 0.5 dB steps\n\r");
    fprintf (PC_HOST, "         e(x)it engineering mode\n\r");
}

/**
 *   Process the command to dump the contents of the data logger flash.
 */
void diagReadFlash()
{
    bool_t dataFoundFlag, userStopFlag;
    uint8_t i, buffer[DIAG_BYTES_PER_LINE];
    uint32_t address;

    // Set the initial conditions to read the flash.
    address = 0x0000;
    userStopFlag = false;

    do 
    {
        // Read each block from the flash device.
        flashReadBlock (address, buffer, DIAG_BYTES_PER_LINE);

        // This flag will get set if any data byte is not equal to 0xff (erase flash state)
        dataFoundFlag = false;

        // Display the address.
        fprintf (PC_HOST, "%08lx ", address);

        // Display each byte in the line.
        for (i = 0; i < DIAG_BYTES_PER_LINE; ++i) 
        {
            fprintf (PC_HOST, "%02x", buffer[i]);

            // Set this flag if the cell is not erased.
            if (buffer[i] != 0xff)
                dataFoundFlag = true;

            // Any key will abort the transfer.
            if (kbhit(PC_HOST))
                userStopFlag = true;
        } // END for

        //  at the end of each line.
        fprintf (PC_HOST, "\n\r");

        // Advance to the next block of memory.
        address += DIAG_BYTES_PER_LINE;
    } while (dataFoundFlag && !userStopFlag);

    // Feedback to let the user know why the transfer stopped.
    if (userStopFlag)
        fprintf (PC_HOST, "User aborted download!\n\r");
}

void diag1PPS()
{
    uint16_t timeStamp, lastTimeStamp;

    lastTimeStamp = 0x0000;

    gpsPowerOn();

    for (;;)
    {
        timeStamp = CCP_2;

        if (timeStamp != lastTimeStamp)
        {
            delay_ms (10);

            timeStamp = CCP_2;

            fprintf (PC_HOST, "%lu %lu\n\r", timeStamp, (timeStamp - lastTimeStamp));

            lastTimeStamp = timeStamp;
        }
    }
}

/**
 *   Process diagnostic commands through the debug RS-232 port.
 */
void diagPort()
{
    bool_t diagDoneFlag, ledFlag, paFlag, showSettingsFlag;
    uint8_t command, amplitude;
    uint32_t freqHz;

    // If the input is low, we aren't connected to the RS-232 device so continue to boot.
    if (!input(PIN_B6))
        return;

    fprintf (PC_HOST, "Engineering Mode\n\r");
    fprintf (PC_HOST, "Application Built %s %s\n\r", __DATE__, __TIME__);

    // Current state of the status LED.
    ledFlag = false;
    output_bit (IO_LED, ledFlag);

    // This flag indicates we are ready to leave the diagnostics mode.
    diagDoneFlag = false;

    // Current state of the PA.
    paFlag = false;

    // Flag that indicate we should show the current carrier frequency.
    showSettingsFlag = false;

    // Set the initial carrier frequency and amplitude.
    freqHz = 445950000;
    amplitude = 0;

    // Wait for the exit command.
    while (!diagDoneFlag) 
    {
        // Wait for the user command.
        command = fgetc(PC_HOST);

        // Decode and process the key stroke.
        switch (command) 
        {
            case 'e':
                diagEraseFlash();
                logInit();
                break;

            case 'l':
            case 'L':
                ledFlag = (ledFlag ? false : true);
                output_bit (IO_LED, ledFlag);
                break;

            case 'h':
            case 'H':
            case '?':
                diagMenu();
                break;

            case 'r':
                diagReadFlash();
                break;

            case 't':
                tncHighRate (true);
                fprintf (PC_HOST, "Set high rate TNC.\n\r");    
                break;

            case 'f':
                freqHz -= 1000;
                ddsSetFreq (freqHz);

                // Display the new frequency.
                showSettingsFlag = true;
                break;

            case 'F':
                freqHz += 1000;
                ddsSetFreq (freqHz);

                // Display the new frequency.
                showSettingsFlag = true;
                break;

            case 'c':
                freqHz -= 25000;
                ddsSetFreq (freqHz);

                // Display the new frequency.
                showSettingsFlag = true;
                break;

            case 'C':
                freqHz += 25000;
                ddsSetFreq (freqHz);

                // Display the new frequency.
                showSettingsFlag = true;
                break;

            case 'p':
            case 'P':
                ddsSetFreq (freqHz);

                paFlag = (paFlag ? false : true);
                output_bit (IO_PTT, paFlag);
                output_bit (IO_OSK, paFlag);

                if (paFlag)
                {
                    ddsSetMode (DDS_MODE_AFSK);             
                    ddsSetAmplitude (amplitude);
                } else
                    ddsSetMode (DDS_MODE_POWERDOWN);

                break;

            case 'a':
                if (amplitude != 200)
                {
                    amplitude += 5;
                    ddsSetAmplitude (amplitude);

                    // Display the new amplitude.
                    showSettingsFlag = true;
                }
                break;

            case 'A':
                if (amplitude != 0)
                {
                    amplitude -= 5;
                    ddsSetAmplitude (amplitude);

                    // Display the new amplitude.
                    showSettingsFlag = true;
                }
                break;

            case 'g':
                diag1PPS();
                break;

            case 'x':
                diagDoneFlag = true;
                break;

            default:
                fprintf (PC_HOST, "Invalid command.  (H)elp for menu.\n\r");
                break;
        } // END switch

        // Display the results of any user requests or commands.
        if (showSettingsFlag) 
        {
            showSettingsFlag = false;

            fprintf (PC_HOST, "%03ld.%03ld MHz  ", freqHz / 1000000, (freqHz / 1000) % 1000);
            fprintf (PC_HOST, "%d.%01ddBc\n\r", amplitude / 10, amplitude % 10);

        } // END if

    } // END while

    // Let the user know we are done with this mode.
    fprintf (PC_HOST, "Exit diagnostic mode.\n\r");

    return;
}

/** @} */


/**
 *  @defgroup DDS AD9954 DDS (Direct Digital Synthesizer)
 *
 *  Functions to control the Analog Devices AD9954 DDS.
 *
 *  @{
 */

/// AD9954 CFR1 - Control functions including RAM, profiles, OSK, sync, sweep, SPI, and power control settings.
#define DDS_AD9954_CFR1 0x00

/// AD9954 CFR2 - Control functions including sync, PLL multiplier, VCO range, and charge pump current.
#define DDS_AD9954_CFR2 0x01

/// AD9954 ASF - Auto ramp rate speed control and output scale factor (0x0000 to 0x3fff).
#define DDS_AD9954_ASF 0x02

/// AD9954 ARR - Amplitude ramp rate for OSK function.
#define DDS_AD9954_ARR 0x03

/// AD9954 FTW0 - Frequency tuning word 0.
#define DDS_AD9954_FTW0 0x04

/// AD9954 FTW1 - Frequency tuning word 1
#define DDS_AD9954_FTW1 0x06

/// AD9954 NLSCW - Negative Linear Sweep Control Word used for spectral shaping in FSK mode
#define DDS_AD9954_NLSCW 0x07

/// AD9954 PLSCW - Positive Linear Sweep Control Word used for spectral shaping in FSK mode
#define DDS_AD9954_PLSCW 0x08

/// AD9954 RSCW0 - RAM Segment Control Word 0
#define DDS_AD9954_RWCW0 0x07

/// AD9954 RSCW0 - RAM Segment Control Word 1
#define DDS_AD9954_RWCW1 0x08

/// AD9954 RAM segment
#define DDS_RAM 0x0b

/// Current operational mode.
DDS_MODE ddsMode;

/// Number of digits in DDS frequency to FTW conversion.
#define DDS_FREQ_TO_FTW_DIGITS 9

/// Array of multiplication factors used to convert frequency to the FTW.
const uint32_t DDS_MULT[DDS_FREQ_TO_FTW_DIGITS] = { 11, 7, 7, 3, 4, 8, 4, 9, 1 };

/// Array of divisors used to convert frequency to the FTW.
const uint32_t DDS_DIVISOR[DDS_FREQ_TO_FTW_DIGITS - 1] = { 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000 };

/// Lookup table to convert dB amplitude scale in 0.5 steps to a linear DDS scale factor.
const uint16_t DDS_AMP_TO_SCALE[] = 
{ 
    16383, 15467, 14601, 13785, 13013, 12286, 11598, 10949, 10337, 9759, 9213, 8697, 
    8211, 7752, 7318, 6909, 6522, 6157, 5813, 5488, 5181, 4891, 4617, 4359, 4115, 3885, 3668, 3463, 
    3269, 3086, 2913, 2750, 2597, 2451, 2314, 2185, 2062, 1947, 1838, 1735, 1638 
};


/// Frequency Word List - 4.0KHz FM frequency deviation at 81.15MHz  (445.950MHz)
const uint32_t freqTable[256] = 
{
    955418300, 955419456, 955420611, 955421765, 955422916, 955424065, 955425210, 955426351, 
    955427488, 955428618, 955429743, 955430861, 955431971, 955433073, 955434166, 955435249, 
    955436322, 955437385, 955438435, 955439474, 955440500, 955441513, 955442511, 955443495, 
    955444464, 955445417, 955446354, 955447274, 955448176, 955449061, 955449926, 955450773, 
    955451601, 955452408, 955453194, 955453960, 955454704, 955455426, 955456126, 955456803, 
    955457457, 955458088, 955458694, 955459276, 955459833, 955460366, 955460873, 955461354, 
    955461809, 955462238, 955462641, 955463017, 955463366, 955463688, 955463983, 955464250, 
    955464489, 955464701, 955464884, 955465040, 955465167, 955465266, 955465337, 955465380, 
    955465394, 955465380, 955465337, 955465266, 955465167, 955465040, 955464884, 955464701, 
    955464489, 955464250, 955463983, 955463688, 955463366, 955463017, 955462641, 955462238, 
    955461809, 955461354, 955460873, 955460366, 955459833, 955459276, 955458694, 955458088, 
    955457457, 955456803, 955456126, 955455426, 955454704, 955453960, 955453194, 955452408, 
    955451601, 955450773, 955449926, 955449061, 955448176, 955447274, 955446354, 955445417, 
    955444464, 955443495, 955442511, 955441513, 955440500, 955439474, 955438435, 955437385, 
    955436322, 955435249, 955434166, 955433073, 955431971, 955430861, 955429743, 955428618, 
    955427488, 955426351, 955425210, 955424065, 955422916, 955421765, 955420611, 955419456, 
    955418300, 955417144, 955415989, 955414836, 955413684, 955412535, 955411390, 955410249, 
    955409113, 955407982, 955406857, 955405740, 955404629, 955403528, 955402435, 955401351, 
    955400278, 955399216, 955398165, 955397126, 955396100, 955395088, 955394089, 955393105, 
    955392136, 955391183, 955390246, 955389326, 955388424, 955387540, 955386674, 955385827, 
    955385000, 955384192, 955383406, 955382640, 955381896, 955381174, 955380474, 955379797, 
    955379143, 955378513, 955377906, 955377324, 955376767, 955376235, 955375728, 955375246, 
    955374791, 955374362, 955373959, 955373583, 955373234, 955372912, 955372618, 955372350, 
    955372111, 955371900, 955371716, 955371560, 955371433, 955371334, 955371263, 955371220, 
    955371206, 955371220, 955371263, 955371334, 955371433, 955371560, 955371716, 955371900, 
    955372111, 955372350, 955372618, 955372912, 955373234, 955373583, 955373959, 955374362, 
    955374791, 955375246, 955375728, 955376235, 955376767, 955377324, 955377906, 955378513, 
    955379143, 955379797, 955380474, 955381174, 955381896, 955382640, 955383406, 955384192, 
    955385000, 955385827, 955386674, 955387540, 955388424, 955389326, 955390246, 955391183, 
    955392136, 955393105, 955394089, 955395088, 955396100, 955397126, 955398165, 955399216, 
    955400278, 955401351, 955402435, 955403528, 955404629, 955405740, 955406857, 955407982, 
    955409113, 955410249, 955411390, 955412535, 955413684, 955414836, 955415989, 955417144
};

/**
 *   Initialize the DDS regsiters and RAM.
 */
void ddsInit()
{
    // Setup the SPI port for the DDS interface.    
    setup_spi( SPI_MASTER | SPI_L_TO_H | SPI_CLK_DIV_4 | SPI_XMIT_L_TO_H );    

    // Set the initial DDS mode.  The ddsSetMode function uses this value to make the desired DDS selections. 
    ddsMode = DDS_MODE_NOT_INITIALIZED;

    // Set the DDS operational mode.
    ddsSetMode (DDS_MODE_POWERDOWN);

    // Set the output to full scale.
    ddsSetOutputScale (0x3fff);

    // CFR2 (Control Function Register No. 2)
    output_low (IO_CS);
    spi_write (DDS_AD9954_CFR2);

    spi_write (0x00);     // Unused register bits
    spi_write (0x00);
    spi_write (0x9c);     // 19x reference clock multipler, high VCO range, nominal charge pump current
    output_high (IO_CS);

    // ARR (Amplitude Ramp Rate) to 15mS for OSK
    output_low (IO_CS);
    spi_write (DDS_AD9954_ARR);

    spi_write (83);
    output_high (IO_CS);

    // Strobe the part so we apply the updates.
    output_high (IO_UPDATE);
    output_low (IO_UPDATE);
}

/**
 *  Set DDS amplitude value in the range 0 to 16383 where 16383 is full scale.  This value is a 
 *  linear multiplier and needs to be scale for RF output power in log scale.
 *
 *  @param scale in the range 0 to 16383
 */
void ddsSetOutputScale (uint16_t scale)
{
    // Set ASF (Amplitude Scale Factor)
    output_low (IO_CS);
    spi_write (DDS_AD9954_ASF);

    spi_write ((scale >> 8) & 0xff);
    spi_write (scale & 0xff);

    output_high (IO_CS);
    
    // Strobe the DDS to set the amplitude.
    output_high (IO_UPDATE);
    output_low (IO_UPDATE);
}

/**
 *   Set the DDS amplitude in units of dBc of full scale where 1 is 0.1 dB.  For example, a value of 30 is 3dBc
 *   or a value of 85 is 8.5dBc.
 *
 *   @param amplitude in 0.1 dBc of full scale
 */ 
void ddsSetAmplitude (uint8_t amplitude)
{
    // Range limit based on the lookup table size.
    if (amplitude > 200)
        return;

    // Set the linear DDS ASF (Amplitude Scale Factor) based on the dB lookup table.
    ddsSetOutputScale (DDS_AMP_TO_SCALE[amplitude / 5]);

    // Toggle the DDS output low and then high to force it to ramp to the new output level setting.
    output_low (IO_OSK);
    delay_ms(25); 

    output_high (IO_OSK);
    delay_ms(25); 
}

/**
 *  Set DDS frequency tuning word.  The output frequency is equal to RefClock * (ftw / 2 ^ 32).
 *
 *  @param ftw Frequency Tuning Word
 */
void ddsSetFTW (uint32_t ftw)
{
    // Set FTW0 (Frequency Tuning Word 0)
    output_low (IO_CS);
    spi_write (DDS_AD9954_FTW0);

    spi_write ((ftw >> 24) & 0xff);
    spi_write ((ftw >> 16) & 0xff);
    spi_write ((ftw >> 8) & 0xff);
    spi_write (ftw & 0xff);

    output_high (IO_CS);
    
    // Strobe the DDS to set the frequency.
    output_high (IO_UPDATE);
    output_low (IO_UPDATE);     
}

/**
 *   Convert frequency in hertz to 32-bit DDS FTW (Frequency Tune Word).
 *
 *   @param freq frequency in Hertz
 *
 */
void ddsSetFreq(uint32_t freq)
{
    uint8_t i;
    uint32_t ftw;
    
    // To avoid rounding errors with floating point math, we do a long multiply on the data.
    ftw = freq * DDS_MULT[0];
    
    for (i = 0; i < DDS_FREQ_TO_FTW_DIGITS - 1; ++i)
        ftw += (freq * DDS_MULT[i+1]) / DDS_DIVISOR[i];
    
    ddsSetFTW (ftw);
}

/**
 *  Set DDS frequency tuning word for the FSK 0 and 1 values.  The output frequency is equal 
 *  to RefClock * (ftw / 2 ^ 32).
 *
 *  @param ftw0 frequency tuning word for the FSK 0 value
 *  @param ftw1 frequency tuning word for the FSK 1 value
 */
void ddsSetFSKFreq (uint32_t ftw0, uint32_t ftw1)
{
    // Set FTW0 (Frequency Tuning Word 0)
    output_low (IO_CS);
    spi_write (DDS_AD9954_FTW0);

    spi_write ((ftw0 >> 24) & 0xff);
    spi_write ((ftw0 >> 16) & 0xff);
    spi_write ((ftw0 >> 8) & 0xff);
    spi_write (ftw0 & 0xff);

    output_high (IO_CS);
    
    // Set FTW0 (Frequency Tuning Word 1)
    output_low (IO_CS);
    spi_write (DDS_AD9954_FTW1);

    spi_write ((ftw1 >> 24) & 0xff);
    spi_write ((ftw1 >> 16) & 0xff);
    spi_write ((ftw1 >> 8) & 0xff);
    spi_write (ftw1 & 0xff);

    output_high (IO_CS);
    
    // Strobe the DDS to set the frequency.
    output_high (IO_UPDATE);
    output_low (IO_UPDATE);     
}

/** 
 *   Set the DDS to run in A-FSK, FSK, or PSK31 mode
 *
 *   @param mode DDS_MODE_APRS, DDS_MODE_PSK31, or DDS_MODE_HF_APRS constant
 */
void ddsSetMode (DDS_MODE mode)
{
    // Save the current mode.
    ddsMode = mode;

    switch (mode) 
    {
        case DDS_MODE_POWERDOWN:
            // CFR1 (Control Function Register No. 1)
            output_low (IO_CS);
            spi_write (DDS_AD9954_CFR1);
        
            spi_write (0x00);
            spi_write (0x00);
            spi_write (0x00);
            spi_write (0xf0);  // Power down all subsystems.
            output_high (IO_CS);
            break;

        case DDS_MODE_AFSK:
            // CFR1 (Control Function Register No. 1)
            output_low (IO_CS);
            spi_write (DDS_AD9954_CFR1);
        
            spi_write (0x03);  // OSK Enable and Auto OSK keying
            spi_write (0x00);
            spi_write (0x00);
            spi_write (0x40);  // Power down comparator circuit
            output_high (IO_CS);
            break;

        case DDS_MODE_FSK:
            // CFR1 (Control Function Register No. 1)
            output_low (IO_CS);
            spi_write (DDS_AD9954_CFR1);

            spi_write (0x03);  // Clear RAM Enable, OSK Enable, Auto OSK keying
            spi_write (0x00);
            spi_write (0x00);
            spi_write (0x40);  // Power down comparator circuit
            output_high (IO_CS);

            // NOTE: The sweep rate requires 1/4 of a bit time (26uS) to transition.
            // 6KHz delta = 70641 counts = (6KHz / 364.8MHz) * 2 ^ 32
            // SYNC_CLK = 91.2MHz  1/91.2MHz * 70641 * 1/29 = 26.7uS

            // NLSCW (Negative Linear Sweep Control Word)
            output_low (IO_CS);
            spi_write (DDS_AD9954_NLSCW);

            spi_write (1);     // Falling sweep ramp rate word
            spi_write (0x00);  // Delta frequency tuning word
            spi_write (0x00);
            spi_write (0x00);
            spi_write (250); 
            output_high (IO_CS);

            // PLSCW (Positive Linear Sweep Control Word)
            output_low (IO_CS);
            spi_write (DDS_AD9954_PLSCW);

            spi_write (1);     // Rising sweep ramp rate word
            spi_write (0x00);  // Delta frequency tuning word
            spi_write (0x00);
            spi_write (0x00);
            spi_write (250); 
            output_high (IO_CS);
            break;
    } // END switch
    
    // Strobe the DDS to change the mode.
    output_high (IO_UPDATE);
    output_low (IO_UPDATE);      
}

/** @} */

/**
 *  @defgroup flash Flash Manager
 *
 *  Functions to control the ST MP25P80 serial flash device.
 *
 *  @{
 */

/// Flash Chip Select - Port B3
#define FLASH_CS PIN_B3

/// Flash Clock - Port B5
#define FLASH_CLK PIN_B5

/// Flash Data Input - Port B4
#define FLASH_D PIN_B4

/// Flash Data Output - Port B2
#define FLASH_Q PIN_B2

/** 
 *   Determine if a flash write or erase operation is currently in progress.
 *
 *   @return true if write/erase in progress
 */
bool_t flashIsWriteInProgress()
{
    uint8_t status;

    output_low (FLASH_CS);

    // Read Status Register (RDSR) flash command.
    flashSendByte (0x05);

    status = flashGetByte();

    output_high (FLASH_CS);

    return (((status & 0x01) == 0x01) ? true : false);
}

/**
 *   Read a block of memory from the flash device.
 *
 *   @param address of desired location in the range 0x00000 to 0xFFFFF (1MB)
 *   @param block pointer to locate of data block
 *   @param length number of bytes to read
 */
void flashReadBlock(uint32_t address, uint8_t *block, uint16_t length)
{
    uint16_t i;
    
    output_low (FLASH_CS);

    // Read Data Byte(s) (READ) flash command.
    flashSendByte (0x03);
    flashSendAddress (address);
    
    for (i = 0; i < length; ++i)
        *block++ = flashGetByte();
    
    output_high (FLASH_CS);
}

/**
 *   Write a block of memory to the flash device.
 *
 *   @param address of desired location in the range 0x00000 to 0xFFFFF (1MB)
 *   @param block pointer data block to write
 *   @param length number of bytes to write
 */
void flashWriteBlock(uint32_t address, uint8_t *block, uint8_t length)
{
    uint8_t i;

    output_low (FLASH_CS);
    // Write Enable (WREN) flash command.
    flashSendByte (0x06);
    output_high (FLASH_CS);
    
    output_low (FLASH_CS);
    // Page Program (PP) flash command.
    flashSendByte (0x02);
    flashSendAddress (address);
    
    for (i = 0; i < length; ++i) 
    {
        // Send each byte in the data block.
        flashSendByte (*block++);

        // Track the address in the flash device.
        ++address;

        // If we cross a page boundary (a page is 256 bytes) we need to stop and send the address again.
        if ((address & 0xff) == 0x00) 
        {
            output_high (FLASH_CS);

            // Write this block of data.
            while (flashIsWriteInProgress());

            output_low (FLASH_CS);
            // Write Enable (WREN) flash command.
            flashSendByte (0x06);
            output_high (FLASH_CS);

            output_low (FLASH_CS);
            // Page Program (PP) flash command.
            flashSendByte (0x02);
            flashSendAddress (address);
        } // END if
    } // END for    

    output_high (FLASH_CS);

    // Wait for the final write operation to complete.
    while (flashIsWriteInProgress());
}

/** 
 *   Erase the entire flash device (all locations set to 0xff).
 */
void flashErase()
{
    output_low (FLASH_CS);
    // Write Enable (WREN) flash command.
    flashSendByte (0x06);
    output_high (FLASH_CS);
    
    output_low (FLASH_CS);
    // Bulk Erase (BE) flash command.
    flashSendByte (0xc7);
    output_high (FLASH_CS);

    while (flashIsWriteInProgress());
}

/**
 *   Read a single byte from the flash device through the serial interface.  This function
 *   only controls the clock line.  The chip select must be configured before calling
 *   this function.
 *
 *   @return byte read from device
 */
uint8_t flashGetByte()
{
    uint8_t i, value;
    
    value = 0;      
    
    // Bit bang the 8-bits.
    for (i = 0; i < 8; ++i) 
    {
        // Data is ready on the rising edge of the clock.
        output_high (FLASH_CLK);

        // MSB is first, so shift left.
        value = value << 1;
    
        if (input (FLASH_Q))
            value = value | 0x01;
    
        output_low (FLASH_CLK);
    } // END for

    return value;
}

/**
 *   Initialize the flash memory subsystem.
 */
void flashInit()
{
    // I/O lines to control flash.
    output_high (FLASH_CS);
    output_low (FLASH_CLK);
    output_low (FLASH_D);
}

/**
 *   Write a single byte to the flash device through the serial interface.  This function
 *   only controls the clock line.  The chip select must be configured before calling
 *   this function.
 *
 *   @param value byte to write to device
 */
void flashSendByte(uint8_t value)
{
    uint8_t i;
    
    // Bit bang the 8-bits.
    for (i = 0; i < 8; ++i) 
    {
        // Drive the data input pin.
        if ((value & 0x80) == 0x80)
            output_high (FLASH_D);
        else
            output_low (FLASH_D);
        
        // MSB is first, so shift leeft.
        value = value << 1;
        
        // Data is accepted on the rising edge of the clock.
        output_high (FLASH_CLK);
        output_low (FLASH_CLK);
    } // END for
}

/**
 *    Write the 24-bit address to the flash device through the serial interface.  This function
 *   only controls the clock line.  The chip select must be configured before calling
 *   this function.
 *
 *   @param address 24-bit flash device address
 */
void flashSendAddress(uint32_t address)
{
    uint8_t i;
    
    // Bit bang the 24-bits.
    for (i = 0; i < 24; ++i) 
    {
        // Drive the data input pin.
        if ((address & 0x800000) == 0x800000)
            output_high (FLASH_D);
        else
            output_low (FLASH_D);
        
        // MSB is first, so shift left.
        address = address << 1;

        // Data is accepted on the rising edge of the clock.
        output_high (FLASH_CLK);
        output_low (FLASH_CLK);
    } // END for
}

/** @} */

/**
 *  @defgroup GPS Motorola M12+ GPS Engine
 *
 *  Functions to control the Motorola M12+ GPS engine in native binary protocol mode.
 *
 *  @{
 */

/// The maximum length of a binary GPS engine message.
#define GPS_BUFFER_SIZE 50

/// GPS parse engine state machine values.
enum GPS_PARSE_STATE_MACHINE 
{
    /// 1st start character '@'
    GPS_START1,

    /// 2nd start character '@'
    GPS_START2,

    /// Upper case 'A' - 'Z' message type
    GPS_COMMAND1,

    /// Lower case 'a' - 'z' message type
    GPS_COMMAND2,

    /// 0 - xx bytes based on message type 'Aa'
    GPS_READMESSAGE,

    /// 8-bit checksum
    GPS_CHECKSUMMESSAGE,

    /// End of message - Carriage Return
    GPS_EOMCR,

    /// End of message - Line Feed
    GPS_EOMLF
};

/// Index into gpsBuffer used to store message data.
uint8_t gpsIndex;

/// State machine used to parse the GPS message stream.
GPS_PARSE_STATE_MACHINE gpsParseState;

/// Buffer to store data as it is read from the GPS engine.
uint8_t gpsBuffer[GPS_BUFFER_SIZE]; 

/// Peak altitude detected while GPS is in 3D fix mode.
int32_t gpsPeakAltitude;

/// Checksum used to verify binary message from GPS engine.
uint8_t gpsChecksum;

/// Last verified GPS message received.
GPSPOSITION_STRUCT gpsPosition;

/**
 *   Get the type of fix.
 *
 *   @return gps fix type enumeration
 */
GPS_FIX_TYPE gpsGetFixType()
{
    // The upper 3-bits determine the fix type.
    switch (gpsPosition.status & 0xe000) 
    {
        case 0xe000:
            return GPS_3D_FIX;

        case 0xc000:
            return GPS_2D_FIX;
    
        default:
            return GPS_NO_FIX;
    } // END switch
}

/**
 *  Peak altitude detected while GPS is in 3D fix mode since the system was booted.
 *
 *  @return altitude in feet
 */
int32_t gpsGetPeakAltitude()
{
    return gpsPeakAltitude;
}

/** 
 *    Initialize the GPS subsystem.
 */
void gpsInit()
{
    // Initial parse state.
    gpsParseState = GPS_START1;

    // Assume we start at sea level.
    gpsPeakAltitude = 0;

    // Clear the structure that stores the position message.
    memset (&gpsPosition, 0, sizeof(GPSPOSITION_STRUCT));

    // Setup the timers used to measure the 1-PPS time period.
    setup_timer_3(T3_INTERNAL | T3_DIV_BY_1);
    setup_ccp2 (CCP_CAPTURE_RE | CCP_USE_TIMER3);
}

/**
 *   Determine if new GPS message is ready to process.  This function is a one shot and
 *   typically returns true once a second for each GPS position fix.
 *
 *   @return true if new message available; otherwise false
 */
bool_t gpsIsReady()
{
    if (gpsPosition.updateFlag) 
    {
        gpsPosition.updateFlag = false;
        return true;
    } // END if

    return false;
}

/**
 *   Calculate NMEA-0183 message checksum of buffer that is length bytes long.
 *
 *   @param buffer pointer to data buffer.
 *   @param length number of bytes in buffer.
 *
 *   @return checksum of buffer
 */
uint8_t gpsNMEAChecksum (uint8_t *buffer, uint8_t length)
{
    uint8_t i, checksum;

    checksum = 0;

    for (i = 0; i < length; ++i)
        checksum ^= buffer[i];

    return checksum;
}

/**
 *   Verify the GPS engine is sending the @@Hb position report message.  If not,
 *   configure the GPS engine to send the desired report.
 *
 *   @return true if GPS engine operation; otherwise false
 */
bool_t gpsSetup()
{
    uint8_t startTime, retryCount;

    // We wait 10 seconds for the GPS engine to respond to our message request.
    startTime = timeGetTicks();
    retryCount = 0;

    while (++retryCount < 10) 
    {
        // Read the serial FIFO and process the GPS messages.
        gpsUpdate();

        // If a GPS data set is available, then GPS is operational.
        if (gpsIsReady()) 
        {
            timeSetDutyCycle (TIME_DUTYCYCLE_10);
            return true;
        }

        if (timeGetTicks() > startTime) 
        {
            puts ("@@Hb\001\053\015\012");
            startTime += 10;
        } // END if
            
    } // END while

    return false;
}

/**
 *   Parse the Motorola @@Hb (Short position/message) report.
 */
void gpsParsePositionMessage()
{
    // Convert the binary stream into data elements.  We will scale to the desired units
    // as the values are used.
    gpsPosition.updateFlag = true;

    gpsPosition.month = gpsBuffer[0];
    gpsPosition.day = gpsBuffer[1];
    gpsPosition.year = ((uint16_t) gpsBuffer[2] << 8) | gpsBuffer[3];
    gpsPosition.hours = gpsBuffer[4];
    gpsPosition.minutes = gpsBuffer[5];
    gpsPosition.seconds = gpsBuffer[6];
    gpsPosition.latitude = ((int32) gpsBuffer[11] << 24) | ((int32) gpsBuffer[12] << 16) | ((int32) gpsBuffer[13] << 8) | (int32) gpsBuffer[14];
    gpsPosition.longitude = ((int32) gpsBuffer[15] << 24) | ((int32) gpsBuffer[16] << 16) | ((int32) gpsBuffer[17] << 8) | gpsBuffer[18];
    gpsPosition.altitudeCM = ((int32) gpsBuffer[19] << 24) | ((int32) gpsBuffer[20] << 16) | ((int32) gpsBuffer[21] << 8) | gpsBuffer[22];
    gpsPosition.altitudeFeet = gpsPosition.altitudeCM * 100l / 3048l;
    gpsPosition.vSpeed = ((uint16_t) gpsBuffer[27] << 8) | gpsBuffer[28];
    gpsPosition.hSpeed = ((uint16_t) gpsBuffer[29] << 8) | gpsBuffer[30];
    gpsPosition.heading = ((uint16_t) gpsBuffer[31] << 8) | gpsBuffer[32];
    gpsPosition.dop = ((uint16_t) gpsBuffer[33] << 8) | gpsBuffer[34];
    gpsPosition.visibleSats = gpsBuffer[35];
    gpsPosition.trackedSats = gpsBuffer[36];
    gpsPosition.status = ((uint16_t) gpsBuffer[37] << 8) | gpsBuffer[38];

    // Update the peak altitude if we have a valid 3D fix.
    if (gpsGetFixType() == GPS_3D_FIX)
        if (gpsPosition.altitudeFeet > gpsPeakAltitude)
            gpsPeakAltitude = gpsPosition.altitudeFeet;
}

/**
 *  Turn on the GPS engine power and serial interface.
 */
void gpsPowerOn()
{
    // 3.0 VDC LDO control line.
    output_high (IO_GPS_PWR);

    // Enable the UART and the transmit line.
#asm
    bsf 0xFAB.7
#endasm
}

/**
 *   Turn off the GPS engine power and serial interface.
 */
void gpsPowerOff()
{
    // Disable the UART and the transmit line.
#asm
    bcf 0xFAB.7
#endasm

    // 3.0 VDC LDO control line.
    output_low (IO_GPS_PWR);
}

/**
 *   Read the serial FIFO and process complete GPS messages.
 */
void gpsUpdate() 
{
    uint8_t value;

    // This state machine handles each characters as it is read from the GPS serial port.
    // We are looking for the GPS mesage @@Hb ... C
    while (serialHasData()) 
    {
        // Get the character value.
        value = serialRead();

        // Process based on the state machine.
        switch (gpsParseState) 
        {
            case GPS_START1:
                if (value == '@')
                    gpsParseState = GPS_START2;
                break;

            case GPS_START2:
                if (value == '@')
                    gpsParseState = GPS_COMMAND1;
                else
                    gpsParseState = GPS_START1;
                break;

            case GPS_COMMAND1:
                if (value == 'H')
                    gpsParseState = GPS_COMMAND2;
                else
                    gpsParseState = GPS_START1;
                break;

            case GPS_COMMAND2:
                if (value == 'b') 
                {
                    gpsParseState = GPS_READMESSAGE;
                    gpsIndex = 0;
                    gpsChecksum = 0;
                    gpsChecksum ^= 'H';
                    gpsChecksum ^= 'b';
                } else
                    gpsParseState = GPS_START1;
                break;

            case GPS_READMESSAGE:
                gpsChecksum ^= value;
                gpsBuffer[gpsIndex++] = value;

                if (gpsIndex == 47)
                    gpsParseState = GPS_CHECKSUMMESSAGE;

                break;

            case GPS_CHECKSUMMESSAGE:
                if (gpsChecksum == value)
                    gpsParseState = GPS_EOMCR;
                else
                    gpsParseState = GPS_START1;
                break;

            case GPS_EOMCR:
                if (value == 13)
                    gpsParseState = GPS_EOMLF;
                else
                    gpsParseState = GPS_START1;
                break;

            case GPS_EOMLF:
                // Once we have the last character, convert the binary message to something usable.
                if (value == 10)
                    gpsParsePositionMessage();

                gpsParseState = GPS_START1;
                break;
        } // END switch
    } // END while
}

/** @} */


/**
 *  @defgroup log Flight Data Recorder
 *
 *  Functions to manage and control the flight data recorder
 *
 *  @{
 */

/// Number of bytes to buffer before writing to flash memory.
#define LOG_WRITE_BUFFER_SIZE 40

/// Last used address in flash memory.
uint32_t logAddress;

/// Temporary buffer that holds data before it is written to flash device.
uint8_t logBuffer[LOG_WRITE_BUFFER_SIZE];

/// Current index into log buffer.
uint8_t logIndex;

/** 
 *    Last used address in flash memory.  This location is where the next log data will
 *    be written.
 *
 *    @return 24-bit flash memory address
 */
uint32_t logGetAddress()
{
    return logAddress;
}

/**
 *   Write the contents of the temporary log buffer to the flash device.  If the buffer
 *   is empty, nothing is done.
 */
void logFlush()
{
    // We only need to write if there is data.
    if (logIndex != 0) 
    {
        flashWriteBlock (logAddress, logBuffer, logIndex);
        logAddress += logIndex;
        logIndex = 0;
    } // END if
}

/** 
 *   Prepare the flight data recorder for logging.
 */
void logInit()
{
    uint8_t buffer[8];
    bool_t endFound;

    fprintf (PC_HOST, "Searching for end of flash log...");

    logAddress = 0x0000;
    endFound = false;

    // Read each logged data block from flash to determine how long it is.
    do 
    {
        // Read the data log entry type.
        flashReadBlock (logAddress, buffer, 1);

        // Based on the log entry type, we'll skip over the data contained in the entry.
        switch (buffer[0]) 
        {
            case LOG_BOOTED:
                logAddress += 7;
                break;

            case LOG_COORD:
                logAddress += 26;
                break;

            case LOG_TEMPERATURE:
                logAddress += 3;
                break;

            case LOG_VOLTAGE:
                logAddress += 5;
                break;

            case 0xff:
                endFound = true;
                break;

            default:
                ++logAddress;
        } // END switch
    } while (logAddress < 0x100000 && !endFound);

    fprintf (PC_HOST, "done.  Log contains %ld bytes.\n\r", logAddress);

    logIndex = 0;
}

/**
 *   Start a entry in the data log.
 *
 *   @param type of log entry, i.e. LOG_BOOTED, LOG_COORD, etc.
 */
void logType (LOG_TYPE type)
{
    // Only add the new entry if there is space.
    if (logAddress >= 0x100000)
        return;

    // Write the old entry first.
    logFlush();

    // Save the type and set the log buffer pointer.
    logBuffer[0] = type;
    logIndex = 1;
}

/**
 *  Save an unsigned, 8-bit value in the log.
 *
 *  @param value unsigned, 8-bit value
 */
void logUint8 (uint8_t value)
{
    logBuffer[logIndex++] = value;
}

/**
 *  Save a signed, 16-bit value in the log.
 *
 *  @param value signed, 16-bit value
 */
void logInt16 (int16_t value)
{
    logBuffer[logIndex++] = (value >> 8) & 0xff;
    logBuffer[logIndex++] = value & 0xff;
}

/**
 *  Save an unsigned, 16-bit value in the log.
 *
 *  @param value unsigned, 16-bit value
 */
void logUint16 (uint16_t value)
{
    logBuffer[logIndex++] = (value >> 8) & 0xff;
    logBuffer[logIndex++] = value & 0xff;
}

/**
 *  Save a signed, 32-bit value in the log.
 *
 *  @param value signed, 32-bit value
 */
void logInt32 (int32_t value)
{
    logBuffer[logIndex++] = (value >> 24) & 0xff;
    logBuffer[logIndex++] = (value >> 16) & 0xff;
    logBuffer[logIndex++] = (value >> 8) & 0xff;
    logBuffer[logIndex++] = value & 0xff;
}

/** @} */

/**
 *  @defgroup LM92 LM92 temperature sensor
 *
 *  Read and control the National Semiconductor LM92 I2C temperature sensor
 *
 *  @{
 */

/** 
 *   Read the LM92 temperature value in 0.1 degrees F.
 *
 *   @return 0.1 degrees F
 */
int16_t lm92GetTemp()
{
    int16_t value;
    int32_t temp;

    // Set the SDA and SCL to input pins to control the LM92.
    set_tris_c (0x9a);

    // Read the temperature register value.
    i2c_start();
    i2c_write(0x97);
    value = ((int16_t) i2c_read() << 8);
    value = value | ((int16_t) i2c_read() & 0x00f8);
    i2c_stop();

    // Set the SDA and SCL back to outputs for use with the AD9954 because we share common clock pins.
    set_tris_c (0x82);

    //  LM92 register   0.0625degC/bit   9   10     9
    //  ------------- * -------------- * - * -- =  -- + 320
    //        8                          5         64

    // Convert to degrees F.
    temp = (int32_t) value;
    temp = ((temp * 9l) / 64l) + 320;
    
    return (int16_t) temp;
}

/** @} */


/**
 *  @defgroup serial Serial Port FIFO
 *
 *  FIFO for the built-in serial port.
 *
 *  @{
 */

/// Size of serial port FIFO in bytes.  It must be a power of 2, i.e. 2, 4, 8, 16, etc.
#define SERIAL_BUFFER_SIZE 64

/// Mask to wrap around at end of circular buffer.  (SERIAL_BUFFER_SIZE - 1)
#define SERIAL_BUFFER_MASK 0x3f

/// Index to the next free location in the buffer.
uint8_t serialHead;

/// Index to the next oldest data in the buffer.
uint8_t serialTail;

/// Circular buffer (FIFO) to hold serial data.
uint8_t serialBuffer[SERIAL_BUFFER_SIZE];

/**
 *   Determine if the FIFO contains data.
 *
 *   @return true if data present; otherwise false
 */
bool_t serialHasData()
{
    if (serialHead == serialTail)
        return false;

    return true;
}

/** 
 *   Initialize the serial processor.
 */
void serialInit()
{
    serialHead = 0;
    serialTail = 0;
}

/**
 *   Get the oldest character from the FIFO.
 *
 *   @return oldest character; 0 if FIFO is empty
 */
uint8_t serialRead()
{
    uint8_t value;

    // Make sure we have something to return.
    if (serialHead == serialTail)
        return 0;

    // Save the value.
    value = serialBuffer[serialTail];

    // Update the pointer.
    serialTail = (serialTail + 1) & SERIAL_BUFFER_MASK;

    return value;
}

/**
 *   Read and store any characters in the PIC serial port in a FIFO.
 */
void serialUpdate()
{
    // If there isn't a character in the PIC buffer, just leave.
    while (kbhit()) 
    {
        // Save the value in the FIFO.
        serialBuffer[serialHead] = getc();

        // Move the pointer to the next open space.
        serialHead = (serialHead + 1) & SERIAL_BUFFER_MASK;
    }
}

/** @} */

/**
 *  @defgroup sys System Library Functions
 *
 *  Generic system functions similiar to the run-time C library.
 *
 *  @{
 */

/**
 *    Calculate the CRC-16 CCITT of buffer that is length bytes long.
 *    The crc parameter allow the calculation on the CRC on multiple buffers.
 *
 *    @param buffer Pointer to data buffer.
 *    @param length number of bytes in data buffer
 *    @param crc starting value
 *
 *    @return CRC-16 of buffer[0 .. length]
 */
uint16_t sysCRC16(uint8_t *buffer, uint8_t length, uint16_t crc)
{
    uint8_t i, bit, value;

    for (i = 0; i < length; ++i) 
    {
        value = buffer[i];

        for (bit = 0; bit < 8; ++bit) 
        {
            crc ^= (value & 0x01);
            crc = ( crc & 0x01 ) ? ( crc >> 1 ) ^ 0x8408 : ( crc >> 1 );
            value = value >> 1;
        } // END for
    } // END for

    return crc ^ 0xffff;
}

/**
 *   Initialize the system library and global resources.
 */
void sysInit()
{
    gpsPowerOff ();
    output_high (IO_LED);

    output_high (IO_CS);
    output_low (IO_PS1);
    output_low (IO_PS0);
    output_low (IO_OSK);
    output_low (IO_UPDATE);
    output_low (IO_PTT);
    output_low (IO_GPS_TXD);

    // Configure the port direction (input/output).
    set_tris_a (0xc3);
    set_tris_b (0x44);
    set_tris_c (0x82);

    // Display a startup message during boot.
    fprintf (PC_HOST, "System booted.\n\r");
}

/**
 *   Log the current GPS position.
 */
void sysLogGPSData()
{
    // Log the data.
    logType (LOG_COORD);
    logUint8 (gpsPosition.hours);
    logUint8 (gpsPosition.minutes);
    logUint8 (gpsPosition.seconds);
    logInt32 (gpsPosition.latitude);
    logInt32 (gpsPosition.longitude);
    logInt32 (gpsPosition.altitudeCM);

    logUint16 (gpsPosition.vSpeed);
    logUint16 (gpsPosition.hSpeed);
    logUint16 (gpsPosition.heading);

    logUint16 (gpsPosition.status);

    logUint8 ((uint8_t) (gpsPosition.dop & 0xff));
    logUint8 ((uint8_t) ((gpsPosition.visibleSats << 4) | gpsPosition.trackedSats));
}

/**
 *   Log the ADC values of the bus and reference voltage values.
 */
void sysLogVoltage()
{
    logType (LOG_VOLTAGE);
    logUint16 (adcRawBusVolt());
    logUint16 (adcRawRefVolt());
}

/** @} */

/**
 *  @defgroup rtc Real Time Interrupt tick
 *
 *  Manage the built-in real time interrupt.  The interrupt clock PRI is 104uS (9600 bps).
 *
 *  @{
 */

/// A counter that ticks every 100mS.
uint8_t timeTicks;

/// Counts the number of 104uS interrupts for a 100mS time period.
uint16_t timeInterruptCount;

/// Counts the number of 100mS time periods in 1 second.
uint8_t time100ms;

/// System time in seconds.
uint8_t timeSeconds;

/// System time in minutes.
uint8_t timeMinutes;

/// System time in hours.
uint8_t timeHours;

/// Desired LED duty cycle 0 to 9 where 0 = 0% and 9 = 90%.
uint8_t timeDutyCycle;

/// Current value of the timer 1 compare register used to generate 104uS interrupt rate (9600bps).
uint16_t timeCompare;

/// 16-bit NCO where the upper 8-bits are used to index into the frequency generation table.
uint16_t timeNCO;

/// Audio tone NCO update step (phase).
uint16_t timeNCOFreq;

/// Counter used to deciminate down from the 104uS to 833uS interrupt rate.  (9600 to 1200 baud) 
uint8_t timeLowRateCount;

/// Current TNC mode (standby, 1200bps A-FSK, or 9600bps FSK)
TNC_DATA_MODE tncDataMode;

/// Flag set true once per second.
bool_t timeUpdateFlag;

/// Flag that indicate the flight time should run.
bool_t timeRunFlag;

/// The change in the CCP_1 register for each 104uS (9600bps) interrupt period.
#define TIME_RATE 125

/**
 *   Running 8-bit counter that ticks every 100mS.
 *
 *   @return 100mS time tick
 */
uint8_t timeGetTicks()
{
    return timeTicks;
}

/**
 *   Initialize the real-time clock.
 */
void timeInit()
{
    timeTicks = 0;
    timeInterruptCount = 0;
    time100mS = 0;
    timeSeconds = 0;
    timeMinutes = 0;
    timeHours = 0;
    timeDutyCycle = TIME_DUTYCYCLE_70;
    timeCompare = TIME_RATE;
    timeUpdateFlag = false;
    timeNCO = 0x00;
    timeLowRateCount = 0;
    timeNCOFreq = 0x2000;
    tncDataMode = TNC_MODE_STANDBY;  
    timeRunFlag = false;
    
    // Configure CCP1 to interrupt at 1mS for PSK31 or 833uS for 1200 baud APRS
    CCP_1 = TIME_RATE;
    set_timer1(timeCompare);
    setup_ccp1( CCP_COMPARE_INT );
    setup_timer_1( T1_INTERNAL | T1_DIV_BY_4 );
}

/**
 *   Function return true once a second based on real-time clock.
 *
 *   @return true on one second tick; otherwise false
 */
bool_t timeIsUpdate()
{
    if (timeUpdateFlag) 
    {
        timeUpdateFlag = false;
        return true;
    } // END if

    return false;
}

/**
 *   Set the blink duty cycle of the heartbeat LED.  The LED blinks at a 1Hz rate.
 *
 *   @param dutyCycle TIME_DUTYCYCLE_xx constant
 */
void timeSetDutyCycle (uint8_t dutyCycle)
{
    timeDutyCycle = dutyCycle;
}

/**
 *   Set a flag to indicate the flight time should run.  This flag is typically set when the payload
 *   lifts off.
 */
void timeSetRunFlag()
{
    timeRunFlag = true;
}

#INT_CCP1
/**
 *   Timer interrupt handler called every 104uS (9600 times/second).
 */
void timeUpdate()
{
    // Setup the next interrupt for the operational mode.
    timeCompare += TIME_RATE;
    CCP_1 = timeCompare;

    switch (tncDataMode) 
    {
        case TNC_MODE_STANDBY:
            break;

        case TNC_MODE_1200_AFSK:
            ddsSetFTW (freqTable[timeNCO >> 8]);

            timeNCO += timeNCOFreq;

            if (++timeLowRateCount == 8) 
            {
                timeLowRateCount = 0;
                tnc1200TimerTick();
            } // END if
            break;

        case TNC_MODE_9600_FSK:
            tnc9600TimerTick();
            break;
    } // END switch

    // Read the GPS serial port and save any incoming characters.
    serialUpdate();

    // Count the number of milliseconds required for the tenth second counter.
    if (++timeInterruptCount == 960) 
    {
        timeInterruptCount = 0;

        // This timer just ticks every 100mS and is used for general timing.
        ++timeTicks;

        // Roll the counter over every second.
        if (++time100mS == 10) 
        {
            time100mS = 0;

            // We set this flag true every second.
            timeUpdateFlag = true;

            // Maintain a Real Time Clock.
            if (timeRunFlag)
                if (++timeSeconds == 60) 
                {
                    timeSeconds = 0;
    
                    if (++timeMinutes == 60) 
                    {
                        timeMinutes = 0;
                        ++timeHours;
                    } // END if timeMinutes
                } // END if timeSeconds
        } // END if time100mS

        // Flash the status LED at timeDutyCycle % per second.  We use the duty cycle for mode feedback.
        if (time100mS >= timeDutyCycle)
            output_low (IO_LED);
        else
            output_high (IO_LED);
    } // END if
}

/** @} */

/**
 *  @defgroup tnc TNC (Terminal Node Controller)
 *
 *  Functions that provide a subset of the TNC functions.
 *
 *  @{
 */

/// The number of start flag bytes to send before the packet message.  (360bits * 1200bps = 300mS)
#define TNC_TX_DELAY 45

/// The size of the TNC output buffer.
#define TNC_BUFFER_SIZE 80

/// States that define the current mode of the 1200 bps (A-FSK) state machine.
enum TNC_TX_1200BPS_STATE 
{
    /// Stand by state ready to accept new message.
    TNC_TX_READY,

    /// 0x7E bit stream pattern used to define start of APRS message.
    TNC_TX_SYNC,

    /// Transmit the AX.25 header that contains the source/destination call signs, APRS path, and flags.
    TNC_TX_HEADER,

    /// Transmit the message data.
    TNC_TX_DATA,

    /// Transmit the end flag sequence.
    TNC_TX_END
};

/// Enumeration of the messages we can transmit. 
enum TNC_MESSAGE_TYPE 
{
    /// Startup message that contains software version information.
    TNC_BOOT_MESSAGE,

    /// Plain text status message.
    TNC_STATUS,

    /// Message that contains GPS NMEA-0183 $GPGGA message.
    TNC_GGA,

    /// Message that contains GPS NMEA-0183 $GPRMC message.
    TNC_RMC
};

/// AX.25 compliant packet header that contains destination, station call sign, and path.
/// 0x76 for SSID-11, 0x78 for SSID-12
uint8_t TNC_AX25_HEADER[30] = { 
    'A' << 1, 'P' << 1, 'R' << 1, 'S' << 1, ' ' << 1, ' ' << 1, 0x60, \
    'K' << 1, 'D' << 1, '7' << 1, 'L' << 1, 'M' << 1, 'O' << 1, 0x76, \
    'G' << 1, 'A' << 1, 'T' << 1, 'E' << 1, ' ' << 1, ' ' << 1, 0x60, \
    'W' << 1, 'I' << 1, 'D' << 1, 'E' << 1, '3' << 1, ' ' << 1, 0x67, \
    0x03, 0xf0 };


/// The next bit to transmit.
uint8_t tncTxBit;

/// Current mode of the 1200 bps state machine.
TNC_TX_1200BPS_STATE tncMode;

/// Counter for each bit (0 - 7) that we are going to transmit.
uint8_t tncBitCount;

/// A shift register that holds the data byte as we bit shift it for transmit.
uint8_t tncShift;

/// Index into the APRS header and data array for each byte as we transmit it.
uint8_t tncIndex;

/// The number of bytes in the message portion of the AX.25 message.
uint8_t tncLength;

/// A copy of the last 5 bits we've transmitted to determine if we need to bit stuff on the next bit.
uint8_t tncBitStuff;

/// Pointer to TNC buffer as we save each byte during message preparation.
uint8_t *tncBufferPnt;

/// The type of message to tranmit in the next packet.
TNC_MESSAGE_TYPE tncPacketType;

/// Buffer to hold the message portion of the AX.25 packet as we prepare it.
uint8_t tncBuffer[TNC_BUFFER_SIZE];

/// Flag that indicates we want to transmit every 5 seconds.
bool_t tncHighRateFlag;

/** 
 *   Initialize the TNC internal variables.
 */
void tncInit()
{
    tncTxBit = 0;
    tncMode = TNC_TX_READY;
    tncPacketType = TNC_BOOT_MESSAGE;
    tncHighRateFlag = false;
}

/**
 *  Determine if the hardware if ready to transmit a 1200 baud packet.
 *
 *  @return true if ready; otherwise false
 */
bool_t tncIsFree()
{
    if (tncMode == TNC_TX_READY)
        return true;

    return false;
}

void tncHighRate(bool_t state)
{
    tncHighRateFlag = state;
}

/**
 *   Configure the TNC for the desired data mode.
 *
 *    @param dataMode enumerated type that specifies 1200bps A-FSK or 9600bps FSK
 */ 
void tncSetMode(TNC_DATA_MODE dataMode)
{
    switch (dataMode) 
    {
        case TNC_MODE_1200_AFSK:
            ddsSetMode (DDS_MODE_AFSK);
            break;

        case TNC_MODE_9600_FSK:
            ddsSetMode (DDS_MODE_FSK);

            // FSK tones at 445.947 and 445.953 MHz
            ddsSetFSKFreq (955382980, 955453621);
            break;
    } // END switch

    tncDataMode = dataMode; 
}

/**
 *  Determine if the seconds value timeSeconds is a valid time slot to transmit
 *  a message.  Time seconds is in UTC.
 *
 *  @param timeSeconds UTC time in seconds
 *
 *  @return true if valid time slot; otherwise false
 */
bool_t tncIsTimeSlot (uint8_t timeSeconds)
{
    if (tncHighRateFlag)
    {
        if ((timeSeconds % 5) == 0)
            return true;

        return false;
    } // END if

    switch (timeSeconds) 
    {
        case 0:
        case 15:
        case 30:
        case 45:
            return true;

        default:
            return false;
    } // END switch
}

/**
 *   Method that is called every 833uS to transmit the 1200bps A-FSK data stream.
 *   The provides the pre and postamble as well as the bit stuffed data stream.
 */
void tnc1200TimerTick()
{
    // Set the A-FSK frequency.
    if (tncTxBit == 0x00)
        timeNCOFreq = 0x2000;
    else
        timeNCOFreq = 0x3aab;

    switch (tncMode) 
    {
        case TNC_TX_READY:
            // Generate a test signal alteranting between high and low tones.
            tncTxBit = (tncTxBit == 0 ? 1 : 0);
            break;

        case TNC_TX_SYNC:
            // The variable tncShift contains the lastest data byte.
            // NRZI enocde the data stream.
            if ((tncShift & 0x01) == 0x00)
                if (tncTxBit == 0)
                    tncTxBit = 1;
                else
                    tncTxBit = 0;
                    
            // When the flag is done, determine if we need to send more or data.
            if (++tncBitCount == 8) 
            {
                tncBitCount = 0;
                tncShift = 0x7e;

                // Once we transmit x mS of flags, send the data.
                // txDelay bytes * 8 bits/byte * 833uS/bit = x mS
                if (++tncIndex == TNC_TX_DELAY) 
                {
                    tncIndex = 0;
                    tncShift = TNC_AX25_HEADER[0];
                    tncBitStuff = 0;
                    tncMode = TNC_TX_HEADER;
                } // END if
            } else
                tncShift = tncShift >> 1;
            break;

        case TNC_TX_HEADER:
            // Determine if we have sent 5 ones in a row, if we have send a zero.
            if (tncBitStuff == 0x1f) 
            {
                if (tncTxBit == 0)
                    tncTxBit = 1;
                else
                    tncTxBit = 0;

                tncBitStuff = 0x00;
                return;
            }    // END if

            // The variable tncShift contains the lastest data byte.
            // NRZI enocde the data stream.
            if ((tncShift & 0x01) == 0x00)
                if (tncTxBit == 0)
                    tncTxBit = 1;
                else
                    tncTxBit = 0;

            // Save the data stream so we can determine if bit stuffing is 
            // required on the next bit time.
            tncBitStuff = ((tncBitStuff << 1) | (tncShift & 0x01)) & 0x1f;

            // If all the bits were shifted, get the next byte.
            if (++tncBitCount == 8) 
            {
                tncBitCount = 0;

                // After the header is sent, then send the data.
                if (++tncIndex == sizeof(TNC_AX25_HEADER)) 
                {
                    tncIndex = 0;
                    tncShift = tncBuffer[0];
                    tncMode = TNC_TX_DATA;
                } else
                    tncShift = TNC_AX25_HEADER[tncIndex];

            } else
                tncShift = tncShift >> 1;

            break;

        case TNC_TX_DATA:
            // Determine if we have sent 5 ones in a row, if we have send a zero.
            if (tncBitStuff == 0x1f) 
            {
                if (tncTxBit == 0)
                    tncTxBit = 1;
                else
                    tncTxBit = 0;

                tncBitStuff = 0x00;
                return;
            }    // END if

            // The variable tncShift contains the lastest data byte.
            // NRZI enocde the data stream.
            if ((tncShift & 0x01) == 0x00)
                if (tncTxBit == 0)
                    tncTxBit = 1;
                else
                    tncTxBit = 0;

            // Save the data stream so we can determine if bit stuffing is 
            // required on the next bit time.
            tncBitStuff = ((tncBitStuff << 1) | (tncShift & 0x01)) & 0x1f;

            // If all the bits were shifted, get the next byte.
            if (++tncBitCount == 8) 
            {
                tncBitCount = 0;

                // If everything was sent, transmit closing flags.
                if (++tncIndex == tncLength) 
                {
                    tncIndex = 0;
                    tncShift = 0x7e;
                    tncMode = TNC_TX_END;
                } else
                    tncShift = tncBuffer[tncIndex];

            } else
                tncShift = tncShift >> 1;

            break;

        case TNC_TX_END:
            // The variable tncShift contains the lastest data byte.
            // NRZI enocde the data stream. 
            if ((tncShift & 0x01) == 0x00)
                if (tncTxBit == 0)
                    tncTxBit = 1;
                else
                    tncTxBit = 0;

            // If all the bits were shifted, get the next one.
            if (++tncBitCount == 8) 
            {
                tncBitCount = 0;
                tncShift = 0x7e;
    
                // Transmit two closing flags.
                if (++tncIndex == 2) 
                {
                    tncMode = TNC_TX_READY;

                    // Tell the TNC time interrupt to stop generating the frequency words.
                    tncDataMode = TNC_MODE_STANDBY;

                    // Key off the DDS.
                    output_low (IO_OSK);
                    output_low (IO_PTT);
                    ddsSetMode (DDS_MODE_POWERDOWN);

                    return;
                } // END if
            } else
                tncShift = tncShift >> 1;

            break;
    } // END switch
}

/**
 *   Method that is called every 104uS to transmit the 9600bps FSK data stream.
 */
void tnc9600TimerTick()
{

}

/**
 *    Write character to the TNC buffer.  Maintain the pointer
 *    and length to the buffer.  The pointer tncBufferPnt and tncLength
 *    must be set before calling this function for the first time.
 * 
 *    @param character to save to telemetry buffer
 */
void tncTxByte (uint8_t character)
{
    *tncBufferPnt++ = character;
    ++tncLength;
}

/**
 *   Generate the GPS NMEA standard UTC time stamp.  Data is written through the tncTxByte
 *   callback function.
 */
void tncNMEATime()
{
    // UTC of position fix.
    printf (tncTxByte, "%02d%02d%02d,", gpsPosition.hours, gpsPosition.minutes, gpsPosition.seconds);
}

/**
 *   Generate the GPS NMEA standard latitude/longitude fix.  Data is written through the tncTxByte
 *   callback function.
 */
void tncNMEAFix()
{
    uint8_t dirChar;
    uint32_t coord, coordMin;

    // Latitude value.
    coord = gpsPosition.latitude;

    if (gpsPosition.latitude < 0) 
    {
        coord = gpsPosition.latitude * -1;
        dirChar = 'S';
    } else {
        coord = gpsPosition.latitude;
        dirChar = 'N';
    }

    coordMin = (coord % 3600000) / 6;
    printf (tncTxByte, "%02ld%02ld.%04ld,%c,", (uint32_t) (coord / 3600000), (uint32_t) (coordMin / 10000), (uint32_t) (coordMin % 10000), dirChar);


    // Longitude value.
    if (gpsPosition.longitude < 0) 
    {
        coord = gpsPosition.longitude * - 1;
        dirChar = 'W';
    } else {
        coord = gpsPosition.longitude;
        dirChar = 'E';
    }

    coordMin = (coord % 3600000) / 6;
    printf (tncTxByte, "%03ld%02ld.%04ld,%c,", (uint32_t) (coord / 3600000), (uint32_t) (coordMin / 10000), (uint32_t) (coordMin % 10000), dirChar);

}

/**
 *   Generate the GPS NMEA-0183 $GPGGA packet.  Data is written through the tncTxByte
 *   callback function.
 */
void tncGPGGAPacket()
{
    // Generate the GPGGA message.
    printf (tncTxByte, "$GPGGA,");

    // Standard NMEA time.
    tncNMEATime();

    // Standard NMEA-0183 latitude/longitude.
    tncNMEAFix();

    // GPS status where 0: not available, 1: available
    if (gpsGetFixType() != GPS_NO_FIX)
        printf (tncTxByte, "1,");
    else
        printf (tncTxByte, "0,");

    // Number of visible birds.
    printf (tncTxByte, "%02d,", gpsPosition.trackedSats);

    // DOP
    printf (tncTxByte, "%ld.%01ld,", gpsPosition.dop / 10, gpsPosition.dop % 10);

    // Altitude in meters.
    printf (tncTxByte, "%ld.%02ld,M,,M,,", (int32_t) (gpsPosition.altitudeCM / 100l), (int32_t) (gpsPosition.altitudeCM % 100));

    // Checksum, we add 1 to skip over the $ character.
    printf (tncTxByte, "*%02X", gpsNMEAChecksum(tncBuffer + 1, tncLength - 1));
}

/**
 *   Generate the GPS NMEA-0183 $GPRMC packet.  Data is written through the tncTxByte
 *   callback function.
 */
void tncGPRMCPacket()
{
    uint32_t temp;

    // Generate the GPRMC message.
    printf (tncTxByte, "$GPRMC,");

    // Standard NMEA time.
    tncNMEATime();

    // GPS status.
    if (gpsGetFixType() != GPS_NO_FIX)
        printf (tncTxByte, "A,");
    else
        printf (tncTxByte, "V,");

    // Standard NMEA-0183 latitude/longitude.
    tncNMEAFix();

    // Speed knots and heading.
    temp = (int32_t) gpsPosition.hSpeed * 75000 / 385826;
    printf (tncTxByte, "%ld.%ld,%ld.%ld,", (int16_t) (temp / 10), (int16_t) (temp % 10), gpsPosition.heading / 10, gpsPosition.heading % 10);

    // Date
    printf (tncTxByte, "%02d%02d%02ld,,", gpsPosition.day, gpsPosition.month, gpsPosition.year % 100);

    // Checksum, skip over the $ character.
    printf (tncTxByte, "*%02X", gpsNMEAChecksum(tncBuffer + 1, tncLength - 1));
}

/**
 *   Generate the plain text status packet.  Data is written through the tncTxByte
 *   callback function.
 */
void tncStatusPacket(int16_t temperature)
{
    uint16_t voltage;

    // Plain text telemetry.
    printf (tncTxByte, ">ANSR ");
    
    // Display the flight time.
    printf (tncTxByte, "%02U:%02U:%02U ", timeHours, timeMinutes, timeSeconds);
    
    // Altitude in feet.
    printf (tncTxByte, "%ld' ", gpsPosition.altitudeFeet);
    
    // Peak altitude in feet.
    printf (tncTxByte, "%ld'pk ", gpsGetPeakAltitude());
    
    // GPS hdop or pdop
    printf (tncTxByte, "%lu.%lu", gpsPosition.dop / 10, gpsPosition.dop % 10);

    // The text 'pdop' for a 3D fix, 'hdop' for a 2D fix, and 'dop' for no fix.
    switch (gpsGetFixType()) 
    {
        case GPS_NO_FIX:
            printf (tncTxByte, "dop ");
            break;

        case GPS_2D_FIX:
            printf (tncTxByte, "hdop ");
            break;


        case GPS_3D_FIX:
            printf (tncTxByte, "pdop ");
            break;
    } // END switch

    // Number of satellites in the solution.
    printf (tncTxByte, "%utrk ", gpsPosition.trackedSats);
    
    // Display main bus voltage.
    voltage = adcGetMainBusVolt();
    printf (tncTxByte, "%lu.%02luvdc ", voltage / 100, voltage % 100);
    
    // Display internal temperature.
    printf (tncTxByte, "%ld.%01ldF ", temperature / 10, abs(temperature % 10));
    
    // Print web address link.
    printf (tncTxByte, "www.kd7lmo.net");
}  

/** 
 *    Prepare an AX.25 data packet.  Each time this method is called, it automatically
 *    rotates through 1 of 3 messages.
 *
 *    @param dataMode enumerated type that specifies 1200bps A-FSK or 9600bps FSK
 */
void tncTxPacket(TNC_DATA_MODE dataMode)
{
    int16_t temperature;
    uint16_t crc;

    // Only transmit if there is not another message in progress.
    if (tncMode != TNC_TX_READY)
        return;

    // Log the battery and reference voltage before we start the RF chain.
    sysLogVoltage();

    // We need to read the temperature sensor before we setup the DDS since they share a common clock pin.
    temperature = lm92GetTemp();

    // Log the system temperature every time we transmit a packet.
    logType (LOG_TEMPERATURE);
    logInt16 (temperature);

    // Configure the DDS for the desired operational.
    tncSetMode (dataMode);

    // Set a pointer to our TNC output buffer.
    tncBufferPnt = tncBuffer;

    // Set the message length counter.
    tncLength = 0;

    // Determine the contents of the packet.
    switch (tncPacketType) 
    {
        case TNC_BOOT_MESSAGE:
            printf (tncTxByte, ">ANSR Pico Beacon - V3.05");

            // Select the next packet we will generate.
            tncPacketType = TNC_STATUS;
            break;

        case TNC_STATUS:
            tncStatusPacket(temperature);

            // Select the next packet we will generate.
            tncPacketType = TNC_GGA;
            break;

        case TNC_GGA:
            tncGPGGAPacket();

            // Select the next packet we will generate.
            tncPacketType = TNC_RMC;
            break;

        case TNC_RMC:
            tncGPRMCPacket();

            // Select the next packet we will generate.
            tncPacketType = TNC_STATUS;
            break;
    }

    // Add the end of message character.
    printf (tncTxByte, "\015");

    // Calculate the CRC for the header and message.
    crc = sysCRC16(TNC_AX25_HEADER, sizeof(TNC_AX25_HEADER), 0xffff);
    crc = sysCRC16(tncBuffer, tncLength, crc ^ 0xffff);

    // Save the CRC in the message.
    *tncBufferPnt++ = crc & 0xff;
    *tncBufferPnt = (crc >> 8) & 0xff;

    // Update the length to include the CRC bytes.
    tncLength += 2;

    // Prepare the variables that are used in the real-time clock interrupt.
    tncBitCount = 0;
    tncShift = 0x7e;
    tncTxBit = 0;
    tncIndex = 0;
    tncMode = TNC_TX_SYNC;

    // Turn on the PA chain.
    output_high (IO_PTT);

    // Wait for the PA chain to power up.
    delay_ms (10);

    // Key the DDS.
    output_high (IO_OSK);

    // Log the battery and reference voltage just after we key the transmitter.
    sysLogVoltage();
}

/** @} */

uint32_t counter;

uint8_t bitIndex;
uint8_t streamIndex;
uint8_t value;

uint8_t bitStream[] = { 0x10, 0x20, 0x30 };

void init()
{
    counter = 0;
    bitIndex = 0;
    streamIndex = 0;
    value = bitStream[0];
}

void test()
{
    counter += 0x10622d;

    CCP_1 = (uint16_t) ((counter >> 16) & 0xffff);

    if ((value & 0x80) == 0x80)
        setup_ccp1 (CCP_COMPARE_SET_ON_MATCH);
    else
        setup_ccp1 (CCP_COMPARE_CLR_ON_MATCH);

    if (++bitIndex == 8)
    {
        bitIndex = 0;
        
        if (++streamIndex == sizeof(bitStream))
        {
            streamIndex = 0;
        }

        value = bitStream[streamIndex];
    } else
        value = value << 1;
}

// This is where we go after reset.
void main()
{
    uint8_t i, utcSeconds, lockLostCounter;

test();

    // Configure the basic systems.
    sysInit();

    // Wait for the power converter chains to stabilize.
    delay_ms (100);

    // Setup the subsystems.
    adcInit();
    flashInit();
    gpsInit();
    logInit();
    timeInit();
    serialInit();
    tncInit();

    // Program the DDS.
    ddsInit();

    // Turn off the LED after everything is configured.
    output_low (IO_LED);

    // Check for the diagnostics plug, otherwise we'll continue to boot.
    diagPort();

    // Setup our interrupts.
    enable_interrupts(GLOBAL);
    enable_interrupts(INT_CCP1);

    // Turn on the GPS engine.
    gpsPowerOn();

    // Allow the GPS engine to boot.
    delay_ms (250);

    // Initialize the GPS engine.
    while (!gpsSetup());

    // Charge the ADC filters.
    for (i = 0; i < 32; ++i)
        adcUpdate();

    // Log startup event.
    logType (LOG_BOOTED);
    logUint8 (gpsPosition.month);
    logUint8 (gpsPosition.day);
    logUint8 (gpsPosition.year & 0xff);

    logUint8 (gpsPosition.hours);
    logUint8 (gpsPosition.minutes);
    logUint8 (gpsPosition.seconds);

    // Transmit software version packet on start up.
    tncTxPacket(TNC_MODE_1200_AFSK);

    // Counters to send packets if the GPS time stamp is not available.
    lockLostCounter = 5;
    utcSeconds = 55;
  
    // This is the main loop that process GPS data and waits for the once per second timer tick.
    for (;;) 
    {
        // Read the GPS engine serial port FIFO and process the GPS data.
        gpsUpdate();

        if (gpsIsReady()) 
        {
            // Start the flight timer when we get a valid 3D fix.
            if (gpsGetFixType() == GPS_3D_FIX)
                timeSetRunFlag();

            // Generate our packets based on the GPS time.
            if (tncIsTimeSlot(gpsPosition.seconds))
                 tncTxPacket(TNC_MODE_1200_AFSK);

            // Sync the internal clock to GPS UTC time.
            utcSeconds = gpsPosition.seconds;

            // This counter is reset every time we receive the GPS message.
            lockLostCounter = 0;

            // Log the data to flash.
            sysLogGPSData();            
        } // END if gpsIsReady   

        // Processing that occurs once a second.
        if (timeIsUpdate()) 
        {
            // We maintain the UTC time in seconds if we shut off the GPS engine or it fails.
            if (++utcSeconds == 60)
                utcSeconds = 0;

            // If we loose information for more than 5 seconds, 
            // we will determine when to send a packet based on internal time.
            if (lockLostCounter == 5) 
            {
                if (tncIsTimeSlot(utcSeconds))
                    tncTxPacket(TNC_MODE_1200_AFSK);
            } else
                ++lockLostCounter;

            // Update the ADC filters.
            adcUpdate();

            if (timeHours == 5 && timeMinutes == 0 && timeSeconds == 0)
                gpsPowerOff();

        } // END if timeIsUpdate

    } // END for
}