1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
|
/**
* http://ad7zj.net/kd7lmo/aprsbeacon_code.html
*
* @mainpage Pico Beacon
*
* @section overview_sec Overview
*
* The Pico Beacon is an APRS based tracking beacon that operates in the UHF 420-450MHz band. The device utilizes a
* Microchip PIC 18F2525 embedded controller, Motorola M12+ GPS engine, and Analog Devices AD9954 DDS. The device is capable
* of generating a 1200bps A-FSK and 9600 bps FSK AX.25 compliant APRS (Automatic Position Reporting System) message.
*
* @section history_sec Revision History
*
* @subsection v305 V3.05
* 23 Dec 2006, Change include; (1) change printf format width to conform to ANSI standard when new CCS 4.xx compiler released.
*
*
* @subsection v304 V3.04
* 10 Jan 2006, Change include; (1) added amplitude control to engineering mode,
* (2) corrected number of bytes reported in log,
* (3) add engineering command to set high rate position reports (5 seconds), and
* (4) corrected size of LOG_COORD block when searching for end of log.
*
* @subsection v303 V3.03
* 15 Sep 2005, Change include; (1) removed AD9954 setting SDIO as input pin,
* (2) additional comments and Doxygen tags,
* (3) integration and test code calculates DDS FTW,
* (4) swapped bus and reference analog input ports (hardware change),
* (5) added message that indicates we are reading flash log and reports length,
* (6) report bus voltage in 10mV steps, and
* (7) change log type enumerated values to XORed nibbles for error detection.
*
*
* @subsection v302 V3.02
* 6 Apr 2005, Change include; (1) corrected tracked satellite count in NMEA-0183 $GPGGA message,
* (2) Doxygen documentation clean up and additions, and
* (3) added integration and test code to baseline.
*
*
* @subsection v301 V3.01
* 13 Jan 2005, Renamed project and files to Pico Beacon.
*
*
* @subsection v300 V3.00
* 15 Nov 2004, Change include; (1) Micro Beacon extreme hardware changes including integral transmitter,
* (2) PIC18F2525 processor,
* (3) AD9954 DDS support functions,
* (4) added comments and formatting for doxygen,
* (5) process GPS data with native Motorola protocol,
* (6) generate plain text $GPGGA and $GPRMC messages,
* (7) power down GPS 5 hours after lock,
* (8) added flight data recorder, and
* (9) added diagnostics terminal mode.
*
*
* @subsection v201 V2.01
* 30 Jan 2004, Change include; (1) General clean up of in-line documentation, and
* (2) changed temperature resolution to 0.1 degrees F.
*
*
* @subsection v200 V2.00
* 26 Oct 2002, Change include; (1) Micro Beacon II hardware changes including PIC18F252 processor,
* (2) serial EEPROM,
* (3) GPS power control,
* (4) additional ADC input, and
* (5) LM60 temperature sensor.
*
*
* @subsection v101 V1.01
* 5 Dec 2001, Change include; (1) Changed startup message, and
* (2) applied SEPARATE pragma to several methods for memory usage.
*
*
* @subsection v100 V1.00
* 25 Sep 2001, Initial release. Flew ANSR-3 and ANSR-4.
*
*
*
* @section copyright_sec Copyright
*
* Copyright (c) 2001-2009 Michael Gray, KD7LMO
*
*
* @section gpl_sec GNU General Public License
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
*
* @section design Design Details
*
* Provides design details on a variety of the components that make up the Pico Beacon.
*
* @subpage power
*/
/**
* @page power Power Consumption
*
* Measured DC power consumption.
*
* 3VDC prime power current
*
* 7mA Held in reset
* 18mA Processor running, all I/O off
* 110mA GPS running
* 120mA GPS running w/antenna
* 250mA DDS running and GPS w/antenna
* 420mA DDS running, GPS w/antenna, and PA chain on with no RF
* 900mA Transmit
*
*/
#ifndef AO_APRS_TEST
#include <ao.h>
#if !HAS_APRS
#error HAS_APRS not set
#endif
#endif
#include <ao_aprs.h>
// Public methods, constants, and data structures for each class.
static void timeInit(void);
static void tncInit(void);
static void tnc1200TimerTick(void);
/** @} */
/**
* @defgroup sys System Library Functions
*
* Generic system functions similiar to the run-time C library.
*
* @{
*/
/**
* Calculate the CRC-16 CCITT of buffer that is length bytes long.
* The crc parameter allow the calculation on the CRC on multiple buffers.
*
* @param buffer Pointer to data buffer.
* @param length number of bytes in data buffer
* @param crc starting value
*
* @return CRC-16 of buffer[0 .. length]
*/
static uint16_t sysCRC16(const uint8_t *buffer, uint8_t length, uint16_t crc)
{
uint8_t i, bit, value;
for (i = 0; i < length; ++i)
{
value = buffer[i];
for (bit = 0; bit < 8; ++bit)
{
crc ^= (value & 0x01);
crc = ( crc & 0x01 ) ? ( crc >> 1 ) ^ 0x8408 : ( crc >> 1 );
value = value >> 1;
} // END for
} // END for
return crc ^ 0xffff;
}
/** @} */
/**
* @defgroup rtc Real Time Interrupt tick
*
* Manage the built-in real time interrupt. The interrupt clock PRI is 104uS (9600 bps).
*
* @{
*/
/// 16-bit NCO where the upper 8-bits are used to index into the frequency generation table.
static uint16_t timeNCO;
/// Audio tone NCO update step (phase).
static uint16_t timeNCOFreq;
/**
* Initialize the real-time clock.
*/
static void timeInit()
{
timeNCO = 0x00;
timeNCOFreq = 0x2000;
}
/** @} */
/**
* @defgroup tnc TNC (Terminal Node Controller)
*
* Functions that provide a subset of the TNC functions.
*
* @{
*/
/// The number of start flag bytes to send before the packet message. (360bits * 1200bps = 300mS)
#define TNC_TX_DELAY 45
/// The size of the TNC output buffer.
#define TNC_BUFFER_SIZE 40
/// States that define the current mode of the 1200 bps (A-FSK) state machine.
typedef enum
{
/// Stand by state ready to accept new message.
TNC_TX_READY,
/// 0x7E bit stream pattern used to define start of APRS message.
TNC_TX_SYNC,
/// Transmit the AX.25 header that contains the source/destination call signs, APRS path, and flags.
TNC_TX_HEADER,
/// Transmit the message data.
TNC_TX_DATA,
/// Transmit the end flag sequence.
TNC_TX_END
} TNC_TX_1200BPS_STATE;
/// AX.25 compliant packet header that contains destination, station call sign, and path.
/// 0x76 for SSID-11, 0x78 for SSID-12
static uint8_t TNC_AX25_HEADER[] = {
'A' << 1, 'P' << 1, 'A' << 1, 'M' << 1, ' ' << 1, ' ' << 1, 0x60,
'N' << 1, '0' << 1, 'C' << 1, 'A' << 1, 'L' << 1, 'L' << 1, 0x78,
'W' << 1, 'I' << 1, 'D' << 1, 'E' << 1, '2' << 1, ' ' << 1, 0x65,
0x03, 0xf0 };
#define TNC_CALLSIGN_OFF 7
#define TNC_CALLSIGN_LEN 6
#define TNC_SSID_OFF 13
static void
tncSetCallsign(void)
{
#ifndef AO_APRS_TEST
uint8_t i;
for (i = 0; i < TNC_CALLSIGN_LEN; i++) {
if (!ao_config.callsign[i])
break;
TNC_AX25_HEADER[TNC_CALLSIGN_OFF + i] = ao_config.callsign[i] << 1;
}
for (; i < TNC_CALLSIGN_LEN; i++)
TNC_AX25_HEADER[TNC_CALLSIGN_OFF + i] = ' ' << 1;
/* Fill in the SSID with the low digit of the serial number */
TNC_AX25_HEADER[TNC_SSID_OFF] = 0x60 | ((ao_config.aprs_ssid & 0xf) << 1);
#endif
}
/// The next bit to transmit.
static uint8_t tncTxBit;
/// Current mode of the 1200 bps state machine.
static TNC_TX_1200BPS_STATE tncMode;
/// Counter for each bit (0 - 7) that we are going to transmit.
static uint8_t tncBitCount;
/// A shift register that holds the data byte as we bit shift it for transmit.
static uint8_t tncShift;
/// Index into the APRS header and data array for each byte as we transmit it.
static uint8_t tncIndex;
/// The number of bytes in the message portion of the AX.25 message.
static uint8_t tncLength;
/// A copy of the last 5 bits we've transmitted to determine if we need to bit stuff on the next bit.
static uint8_t tncBitStuff;
/// Buffer to hold the message portion of the AX.25 packet as we prepare it.
static uint8_t tncBuffer[TNC_BUFFER_SIZE];
/**
* Initialize the TNC internal variables.
*/
static void tncInit()
{
tncTxBit = 0;
tncMode = TNC_TX_READY;
}
/**
* Method that is called every 833uS to transmit the 1200bps A-FSK data stream.
* The provides the pre and postamble as well as the bit stuffed data stream.
*/
static void tnc1200TimerTick()
{
// Set the A-FSK frequency.
if (tncTxBit == 0x00)
timeNCOFreq = 0x2000;
else
timeNCOFreq = 0x3aab;
switch (tncMode)
{
case TNC_TX_READY:
// Generate a test signal alteranting between high and low tones.
tncTxBit = (tncTxBit == 0 ? 1 : 0);
break;
case TNC_TX_SYNC:
// The variable tncShift contains the lastest data byte.
// NRZI enocde the data stream.
if ((tncShift & 0x01) == 0x00) {
if (tncTxBit == 0)
tncTxBit = 1;
else
tncTxBit = 0;
}
// When the flag is done, determine if we need to send more or data.
if (++tncBitCount == 8)
{
tncBitCount = 0;
tncShift = 0x7e;
// Once we transmit x mS of flags, send the data.
// txDelay bytes * 8 bits/byte * 833uS/bit = x mS
if (++tncIndex == TNC_TX_DELAY)
{
tncIndex = 0;
tncShift = TNC_AX25_HEADER[0];
tncBitStuff = 0;
tncMode = TNC_TX_HEADER;
} // END if
} else
tncShift = tncShift >> 1;
break;
case TNC_TX_HEADER:
// Determine if we have sent 5 ones in a row, if we have send a zero.
if (tncBitStuff == 0x1f)
{
if (tncTxBit == 0)
tncTxBit = 1;
else
tncTxBit = 0;
tncBitStuff = 0x00;
return;
} // END if
// The variable tncShift contains the lastest data byte.
// NRZI enocde the data stream.
if ((tncShift & 0x01) == 0x00) {
if (tncTxBit == 0)
tncTxBit = 1;
else
tncTxBit = 0;
}
// Save the data stream so we can determine if bit stuffing is
// required on the next bit time.
tncBitStuff = ((tncBitStuff << 1) | (tncShift & 0x01)) & 0x1f;
// If all the bits were shifted, get the next byte.
if (++tncBitCount == 8)
{
tncBitCount = 0;
// After the header is sent, then send the data.
if (++tncIndex == sizeof(TNC_AX25_HEADER))
{
tncIndex = 0;
tncShift = tncBuffer[0];
tncMode = TNC_TX_DATA;
} else
tncShift = TNC_AX25_HEADER[tncIndex];
} else
tncShift = tncShift >> 1;
break;
case TNC_TX_DATA:
// Determine if we have sent 5 ones in a row, if we have send a zero.
if (tncBitStuff == 0x1f)
{
if (tncTxBit == 0)
tncTxBit = 1;
else
tncTxBit = 0;
tncBitStuff = 0x00;
return;
} // END if
// The variable tncShift contains the lastest data byte.
// NRZI enocde the data stream.
if ((tncShift & 0x01) == 0x00) {
if (tncTxBit == 0)
tncTxBit = 1;
else
tncTxBit = 0;
}
// Save the data stream so we can determine if bit stuffing is
// required on the next bit time.
tncBitStuff = ((tncBitStuff << 1) | (tncShift & 0x01)) & 0x1f;
// If all the bits were shifted, get the next byte.
if (++tncBitCount == 8)
{
tncBitCount = 0;
// If everything was sent, transmit closing flags.
if (++tncIndex == tncLength)
{
tncIndex = 0;
tncShift = 0x7e;
tncMode = TNC_TX_END;
} else
tncShift = tncBuffer[tncIndex];
} else
tncShift = tncShift >> 1;
break;
case TNC_TX_END:
// The variable tncShift contains the lastest data byte.
// NRZI enocde the data stream.
if ((tncShift & 0x01) == 0x00) {
if (tncTxBit == 0)
tncTxBit = 1;
else
tncTxBit = 0;
}
// If all the bits were shifted, get the next one.
if (++tncBitCount == 8)
{
tncBitCount = 0;
tncShift = 0x7e;
// Transmit two closing flags.
if (++tncIndex == 2)
{
tncMode = TNC_TX_READY;
return;
} // END if
} else
tncShift = tncShift >> 1;
break;
} // END switch
}
static void tncCompressInt(uint8_t *dest, int32_t value, int len) {
int i;
for (i = len - 1; i >= 0; i--) {
dest[i] = value % 91 + 33;
value /= 91;
}
}
static int ao_num_sats(void)
{
int i;
int n = 0;
for (i = 0; i < ao_gps_tracking_data.channels; i++) {
if (ao_gps_tracking_data.sats[i].svid)
n++;
}
return n;
}
static char ao_gps_locked(void)
{
if (ao_gps_data.flags & AO_GPS_VALID)
return 'L';
else
return 'U';
}
static int tncComment(uint8_t *buf)
{
#if HAS_ADC
struct ao_data packet;
ao_arch_critical(ao_data_get(&packet););
int16_t battery = ao_battery_decivolt(packet.adc.v_batt);
#ifdef AO_SENSE_DROGUE
int16_t apogee = ao_ignite_decivolt(AO_SENSE_DROGUE(&packet));
#endif
#ifdef AO_SENSE_MAIN
int16_t main = ao_ignite_decivolt(AO_SENSE_MAIN(&packet));
#endif
return sprintf((char *) buf,
"%c%d B%d.%d"
#ifdef AO_SENSE_DROGUE
" A%d.%d"
#endif
#ifdef AO_SENSE_MAIN
" M%d.%d"
#endif
" %d"
, ao_gps_locked(),
ao_num_sats(),
battery/10,
battery % 10
#ifdef AO_SENSE_DROGUE
, apogee/10,
apogee%10
#endif
#ifdef AO_SENSE_MAIN
, main/10,
main%10
#endif
, ao_serial_number
);
#else
return sprintf((char *) buf,
"%c%d",
ao_gps_locked(),
ao_num_sats());
#endif
}
/*
* APRS use a log encoding of altitude with a base of 1.002, such that
*
* feet = 1.002 ** encoded_altitude
*
* meters = (1.002 ** encoded_altitude) * 0.3048
*
* log2(meters) = log2(1.002 ** encoded_altitude) + log2(0.3048)
*
* log2(meters) = encoded_altitude * log2(1.002) + log2(0.3048)
*
* encoded_altitude = (log2(meters) - log2(0.3048)) / log2(1.002)
*
* encoded_altitude = (log2(meters) + log2(1/0.3048)) * (1/log2(1.002))
*
* We need 9 bits of mantissa to hold 1/log2(1.002) (~ 347), which leaves us
* 23 bits of fraction. That turns out to be *just* enough to avoid any
* errors in the result (cool, huh?).
*/
#define fixed23_int(x) ((uint32_t) ((x) << 23))
#define fixed23_one fixed23_int(1)
#define fixed23_two fixed23_int(2)
#define fixed23_half (fixed23_one >> 1)
#define fixed23_floor(x) ((x) >> 23)
#define fixed23_real(x) ((uint32_t) ((x) * fixed23_one + 0.5))
static inline uint64_t
fixed23_mul(uint32_t x, uint32_t y)
{
return ((uint64_t) x * y + fixed23_half) >> 23;
}
/*
* Use 30 fraction bits for the altitude. We need two bits at the
* top as we need to handle x, where 0 <= x < 4. We don't
* need 30 bits, but it's actually easier this way as we normalize
* the incoming value to 1 <= x < 2, and having the integer portion
* way up high means we don't have to deal with shifting in both
* directions to cover from 0 to 2**30-1.
*/
#define fixed30_int(x) ((uint32_t) ((x) << 30))
#define fixed30_one fixed30_int(1)
#define fixed30_half (fixed30_one >> 1)
#define fixed30_two fixed30_int(2)
static inline uint32_t
fixed30_mul(uint32_t x, uint32_t y)
{
return ((uint64_t) x * y + fixed30_half) >> 30;
}
/*
* Fixed point log2. Takes integer argument, returns
* fixed point result with 23 bits of fraction
*/
static uint32_t
ao_fixed_log2(uint32_t x)
{
uint32_t result;
uint32_t frac = fixed23_one;
/* Bounds check for sanity */
if (x <= 0)
return 0;
if (x >= fixed30_one)
return 0xffffffff;
/*
* Normalize and compute integer log portion
*
* This makes 1 <= x < 2, and computes result to be
* the integer portion of the log2 of x
*/
for (result = fixed23_int(30); x < fixed30_one; result -= fixed23_one, x <<= 1)
;
/*
* Given x, find y and n such that:
*
* x = y * 2**n 1 <= y < 2
*
* That means:
*
* lb(x) = n + lb(y)
*
* Now, repeatedly square y to find find z and m such that:
*
* z = y ** (2**m) 2 <= z < 4
*
* This is possible because 1 <= y < 2
*
* lb(y) = lb(z) / 2**m
*
* (1 + lb(z/2))
* = -------------
* 2**m
*
* = 2**-m + 2**-m * lb(z/2)
*
* Note that if 2 <= z < 4, then 1 <= (z/2) < 2, so we can
* iterate to find lb(z/2)
*
* In this implementation, we don't care about the 'm' value,
* instead we only care about 2**-m, which we store in 'frac'
*/
while (frac != 0 && x != fixed30_one) {
/* Repeatedly square x until 2 <= x < 4 */
while (x < fixed30_two) {
x = fixed30_mul(x, x);
/* Divide the fractional result bit by 2 */
frac >>= 1;
}
/* Add in this result bit */
result |= frac;
/* Make 1 <= x < 2 again and iterate */
x >>= 1;
}
return result;
}
#define APRS_LOG_CONVERT fixed23_real(1.714065192056127)
#define APRS_LOG_BASE fixed23_real(346.920048461100941)
static int
ao_aprs_encode_altitude(int meters)
{
return fixed23_floor(fixed23_mul(ao_fixed_log2(meters) + APRS_LOG_CONVERT, APRS_LOG_BASE) + fixed23_half);
}
/**
* Generate the plain text position packet.
*/
static int tncPositionPacket(void)
{
static int32_t latitude;
static int32_t longitude;
static int32_t altitude;
uint8_t *buf;
if (ao_gps_data.flags & AO_GPS_VALID) {
latitude = ao_gps_data.latitude;
longitude = ao_gps_data.longitude;
altitude = AO_TELEMETRY_LOCATION_ALTITUDE(&ao_gps_data);
if (altitude < 0)
altitude = 0;
}
buf = tncBuffer;
#ifdef AO_APRS_TEST
#define AO_APRS_FORMAT_COMPRESSED 0
#define AO_APRS_FORMAT_UNCOMPRESSED 1
switch (AO_APRS_FORMAT_COMPRESSED) {
#else
switch (ao_config.aprs_format) {
#endif
case AO_APRS_FORMAT_COMPRESSED:
default:
{
int32_t lat, lon, alt;
*buf++ = '!';
/* Symbol table ID */
*buf++ = '/';
lat = ((uint64_t) 380926 * (900000000 - latitude)) / 10000000;
lon = ((uint64_t) 190463 * (1800000000 + longitude)) / 10000000;
alt = ao_aprs_encode_altitude(altitude);
tncCompressInt(buf, lat, 4);
buf += 4;
tncCompressInt(buf, lon, 4);
buf += 4;
/* Symbol code */
*buf++ = '\'';
tncCompressInt(buf, alt, 2);
buf += 2;
*buf++ = 33 + ((1 << 5) | (2 << 3));
break;
}
case AO_APRS_FORMAT_UNCOMPRESSED:
{
char lat_sign = 'N', lon_sign = 'E';
int32_t lat = latitude;
int32_t lon = longitude;
int32_t alt = altitude;
uint16_t lat_deg;
uint16_t lon_deg;
uint16_t lat_min;
uint16_t lat_frac;
uint16_t lon_min;
uint16_t lon_frac;
if (lat < 0) {
lat_sign = 'S';
lat = -lat;
}
if (lon < 0) {
lon_sign = 'W';
lon = -lon;
}
/* Round latitude and longitude by 0.005 minutes */
lat = lat + 833;
if (lat > 900000000)
lat = 900000000;
lon = lon + 833;
if (lon > 1800000000)
lon = 1800000000;
lat_deg = lat / 10000000;
lat -= lat_deg * 10000000;
lat *= 60;
lat_min = lat / 10000000;
lat -= lat_min * 10000000;
lat_frac = lat / 100000;
lon_deg = lon / 10000000;
lon -= lon_deg * 10000000;
lon *= 60;
lon_min = lon / 10000000;
lon -= lon_min * 10000000;
lon_frac = lon / 100000;
/* Convert from meters to feet */
alt = (alt * 328 + 50) / 100;
buf += sprintf((char *) tncBuffer, "!%02u%02u.%02u%c/%03u%02u.%02u%c'/A=%06lu ",
lat_deg, lat_min, lat_frac, lat_sign,
lon_deg, lon_min, lon_frac, lon_sign,
(long) alt);
break;
}
}
buf += tncComment(buf);
return buf - tncBuffer;
}
static int16_t
tncFill(uint8_t *buf, int16_t len)
{
int16_t l = 0;
uint8_t b;
uint8_t bit;
while (tncMode != TNC_TX_READY && l < len) {
b = 0;
for (bit = 0; bit < 8; bit++) {
b = b << 1 | (timeNCO >> 15);
timeNCO += timeNCOFreq;
}
*buf++ = b;
l++;
tnc1200TimerTick();
}
if (tncMode == TNC_TX_READY)
l = -l;
return l;
}
/**
* Prepare an AX.25 data packet. Each time this method is called, it automatically
* rotates through 1 of 3 messages.
*
* @param dataMode enumerated type that specifies 1200bps A-FSK or 9600bps FSK
*/
void ao_aprs_send(void)
{
uint16_t crc;
timeInit();
tncInit();
tncSetCallsign();
tncLength = tncPositionPacket();
// Calculate the CRC for the header and message.
crc = sysCRC16(TNC_AX25_HEADER, sizeof(TNC_AX25_HEADER), 0xffff);
crc = sysCRC16(tncBuffer, tncLength, crc ^ 0xffff);
// Save the CRC in the message.
tncBuffer[tncLength++] = crc & 0xff;
tncBuffer[tncLength++] = (crc >> 8) & 0xff;
// Prepare the variables that are used in the real-time clock interrupt.
tncBitCount = 0;
tncShift = 0x7e;
tncTxBit = 0;
tncIndex = 0;
tncMode = TNC_TX_SYNC;
ao_radio_send_aprs(tncFill);
}
/** @} */
|