1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
/*
* Copyright © 2009 Keith Packard <keithp@keithp.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/
#include <ao.h>
#include <ao_task.h>
#if HAS_SAMPLE_PROFILE
#include <ao_sample_profile.h>
#endif
#define AO_NO_TASK_INDEX 0xff
__xdata struct ao_task * __xdata ao_tasks[AO_NUM_TASKS];
__data uint8_t ao_num_tasks;
__data uint8_t ao_cur_task_index;
__xdata struct ao_task *__data ao_cur_task;
#ifdef ao_arch_task_globals
ao_arch_task_globals
#endif
#define AO_CHECK_STACK 0
#if AO_CHECK_STACK
static uint8_t in_yield;
static inline void ao_check_stack(void) {
uint8_t q;
if (!in_yield && ao_cur_task && &q < &ao_cur_task->stack[0])
ao_panic(AO_PANIC_STACK);
}
#else
#define ao_check_stack()
#endif
void
ao_add_task(__xdata struct ao_task * task, void (*start)(void), __code char *name) __reentrant
{
uint8_t task_id;
uint8_t t;
if (ao_num_tasks == AO_NUM_TASKS)
ao_panic(AO_PANIC_NO_TASK);
for (task_id = 1; task_id != 0; task_id++) {
for (t = 0; t < ao_num_tasks; t++)
if (ao_tasks[t]->task_id == task_id)
break;
if (t == ao_num_tasks)
break;
}
ao_tasks[ao_num_tasks++] = task;
task->task_id = task_id;
task->name = name;
task->wchan = NULL;
/*
* Construct a stack frame so that it will 'return'
* to the start of the task
*/
ao_arch_init_stack(task, start);
}
__xdata uint8_t ao_idle;
/* Task switching function. This must not use any stack variables */
void
ao_yield(void) ao_arch_naked_define
{
ao_arch_save_regs();
if (ao_cur_task_index == AO_NO_TASK_INDEX)
ao_cur_task_index = ao_num_tasks-1;
else
{
#if HAS_SAMPLE_PROFILE
uint16_t tick = ao_sample_profile_timer_value();
uint16_t run = tick - ao_cur_task->start;
if (run > ao_cur_task->max_run)
ao_cur_task->max_run = run;
++ao_cur_task->yields;
#endif
ao_arch_save_stack();
}
ao_arch_isr_stack();
#if AO_CHECK_STACK
in_yield = 1;
#endif
/* Find a task to run. If there isn't any runnable task,
* this loop will run forever, which is just fine
*/
{
__pdata uint8_t ao_last_task_index = ao_cur_task_index;
for (;;) {
++ao_cur_task_index;
if (ao_cur_task_index == ao_num_tasks)
ao_cur_task_index = 0;
ao_cur_task = ao_tasks[ao_cur_task_index];
/* Check for ready task */
if (ao_cur_task->wchan == NULL)
break;
/* Check if the alarm is set for a time which has passed */
if (ao_cur_task->alarm &&
(int16_t) (ao_time() - ao_cur_task->alarm) >= 0)
break;
/* Enter lower power mode when there isn't anything to do */
if (ao_cur_task_index == ao_last_task_index)
ao_arch_cpu_idle();
}
#if HAS_SAMPLE_PROFILE
ao_cur_task->start = ao_sample_profile_timer_value();
#endif
}
#if AO_CHECK_STACK
cli();
in_yield = 0;
#endif
ao_arch_restore_stack();
}
uint8_t
ao_sleep(__xdata void *wchan)
{
ao_cur_task->wchan = wchan;
ao_yield();
if (ao_cur_task->wchan) {
ao_cur_task->wchan = NULL;
ao_cur_task->alarm = 0;
return 1;
}
return 0;
}
void
ao_wakeup(__xdata void *wchan)
{
uint8_t i;
ao_check_stack();
for (i = 0; i < ao_num_tasks; i++)
if (ao_tasks[i]->wchan == wchan)
ao_tasks[i]->wchan = NULL;
}
void
ao_alarm(uint16_t delay)
{
/* Make sure we sleep *at least* delay ticks, which means adding
* one to account for the fact that we may be close to the next tick
*/
if (!(ao_cur_task->alarm = ao_time() + delay + 1))
ao_cur_task->alarm = 1;
}
void
ao_clear_alarm(void)
{
ao_cur_task->alarm = 0;
}
static __xdata uint8_t ao_forever;
void
ao_delay(uint16_t ticks)
{
ao_alarm(ticks);
ao_sleep(&ao_forever);
ao_clear_alarm();
}
void
ao_exit(void)
{
ao_arch_critical(
uint8_t i;
ao_num_tasks--;
for (i = ao_cur_task_index; i < ao_num_tasks; i++)
ao_tasks[i] = ao_tasks[i+1];
ao_cur_task_index = AO_NO_TASK_INDEX;
ao_yield();
);
/* we'll never get back here */
}
void
ao_task_info(void)
{
uint8_t i;
__xdata struct ao_task *task;
for (i = 0; i < ao_num_tasks; i++) {
task = ao_tasks[i];
printf("%12s: wchan %04x\n",
task->name,
(int) task->wchan);
}
}
void
ao_start_scheduler(void)
{
ao_cur_task_index = AO_NO_TASK_INDEX;
ao_cur_task = NULL;
ao_yield();
}
|