1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
|
/*
* Copyright © 2009 Keith Packard <keithp@keithp.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/
#ifndef AO_FLIGHT_TEST
#include "ao.h"
#endif
#ifndef HAS_ACCEL
#error Please define HAS_ACCEL
#endif
#ifndef HAS_GPS
#error Please define HAS_GPS
#endif
#ifndef HAS_USB
#error Please define HAS_USB
#endif
#ifndef USE_KALMAN
#error Please define USE_KALMAN
#endif
/* Main flight thread. */
__pdata enum ao_flight_state ao_flight_state; /* current flight state */
__pdata uint16_t ao_flight_tick; /* time of last data */
__pdata uint16_t ao_flight_prev_tick; /* time of previous data */
__pdata int16_t ao_flight_pres; /* filtered pressure */
__pdata int16_t ao_ground_pres; /* startup pressure */
__pdata int16_t ao_min_pres; /* minimum recorded pressure */
__pdata uint16_t ao_launch_tick; /* time of launch detect */
__pdata int16_t ao_main_pres; /* pressure to eject main */
#if HAS_ACCEL
__pdata int16_t ao_flight_accel; /* filtered acceleration */
__pdata int16_t ao_ground_accel; /* startup acceleration */
#endif
/*
* track min/max data over a long interval to detect
* resting
*/
__pdata uint16_t ao_interval_end;
__pdata int16_t ao_interval_cur_min_pres;
__pdata int16_t ao_interval_cur_max_pres;
__pdata int16_t ao_interval_min_pres;
__pdata int16_t ao_interval_max_pres;
#if HAS_ACCEL
__pdata int16_t ao_interval_cur_min_accel;
__pdata int16_t ao_interval_cur_max_accel;
__pdata int16_t ao_interval_min_accel;
__pdata int16_t ao_interval_max_accel;
#endif
__data uint8_t ao_flight_adc;
__pdata int16_t ao_raw_pres;
__xdata uint8_t ao_flight_force_idle;
#if HAS_ACCEL
__pdata int16_t ao_raw_accel, ao_raw_accel_prev;
__pdata int16_t ao_accel_2g;
/* Accelerometer calibration
*
* We're sampling the accelerometer through a resistor divider which
* consists of 5k and 10k resistors. This multiplies the values by 2/3.
* That goes into the cc1111 A/D converter, which is running at 11 bits
* of precision with the bits in the MSB of the 16 bit value. Only positive
* values are used, so values should range from 0-32752 for 0-3.3V. The
* specs say we should see 40mV/g (uncalibrated), multiply by 2/3 for what
* the A/D converter sees (26.67 mV/g). We should see 32752/3300 counts/mV,
* for a final computation of:
*
* 26.67 mV/g * 32767/3300 counts/mV = 264.8 counts/g
*
* Zero g was measured at 16000 (we would expect 16384).
* Note that this value is only require to tell if the
* rocket is standing upright. Once that is determined,
* the value of the accelerometer is averaged for 100 samples
* to find the resting accelerometer value, which is used
* for all further flight computations
*/
#define GRAVITY 9.80665
/* convert m/s to velocity count */
#define VEL_MPS_TO_COUNT(mps) (((int32_t) (((mps) / GRAVITY) * (AO_HERTZ/2))) * (int32_t) ao_accel_2g)
#define ACCEL_NOSE_UP (ao_accel_2g >> 2)
#define ACCEL_BOOST ao_accel_2g
#define ACCEL_COAST (ao_accel_2g >> 3)
#define ACCEL_INT_LAND (ao_accel_2g >> 3)
#define ACCEL_VEL_MACH VEL_MPS_TO_COUNT(200)
#define ACCEL_VEL_BOOST VEL_MPS_TO_COUNT(5)
#endif
/*
* Barometer calibration
*
* We directly sample the barometer. The specs say:
*
* Pressure range: 15-115 kPa
* Voltage at 115kPa: 2.82
* Output scale: 27mV/kPa
*
* If we want to detect launch with the barometer, we need
* a large enough bump to not be fooled by noise. At typical
* launch elevations (0-2000m), a 200Pa pressure change cooresponds
* to about a 20m elevation change. This is 5.4mV, or about 3LSB.
* As all of our calculations are done in 16 bits, we'll actually see a change
* of 16 times this though
*
* 27 mV/kPa * 32767 / 3300 counts/mV = 268.1 counts/kPa
*/
#define BARO_kPa 268
#define BARO_LAUNCH (BARO_kPa / 5) /* .2kPa, or about 20m */
#define BARO_APOGEE (BARO_kPa / 10) /* .1kPa, or about 10m */
#define BARO_COAST (BARO_kPa * 5) /* 5kpa, or about 500m */
#define BARO_MAIN (BARO_kPa) /* 1kPa, or about 100m */
#define BARO_INT_LAND (BARO_kPa / 20) /* .05kPa, or about 5m */
#define BARO_LAND (BARO_kPa * 10) /* 10kPa or about 1000m */
/* We also have a clock, which can be used to sanity check things in
* case of other failures
*/
#define BOOST_TICKS_MAX AO_SEC_TO_TICKS(15)
#if HAS_ACCEL
/* This value is scaled in a weird way. It's a running total of accelerometer
* readings minus the ground accelerometer reading. That means it measures
* velocity, and quite accurately too. As it gets updated 100 times a second,
* it's scaled by 100
*/
__pdata int32_t ao_flight_vel;
__pdata int32_t ao_min_vel;
__pdata int32_t ao_old_vel;
__pdata int16_t ao_old_vel_tick;
__xdata int32_t ao_raw_accel_sum;
#endif
#if USE_KALMAN
__pdata int16_t ao_ground_height;
__pdata int32_t ao_k_max_height;
__pdata int32_t ao_k_height;
__pdata int32_t ao_k_speed;
__pdata int32_t ao_k_accel;
#define to_fix16(x) ((int16_t) ((x) * 65536.0 + 0.5))
#define to_fix32(x) ((int32_t) ((x) * 65536.0 + 0.5))
#define from_fix(x) ((x) >> 16)
#define AO_K0_100 to_fix16(0.05680323)
#define AO_K1_100 to_fix16(0.16608182)
#define AO_K2_100 to_fix16(0.24279580)
#define AO_K_STEP_100 to_fix16(0.01)
#define AO_K_STEP_2_2_100 to_fix16(0.00005)
#define AO_K0_10 to_fix16(0.23772023)
#define AO_K1_10 to_fix16(0.32214149)
#define AO_K2_10 to_fix16(0.21827159)
#define AO_K_STEP_10 to_fix16(0.1)
#define AO_K_STEP_2_2_10 to_fix16(0.005)
static void
ao_kalman_baro(void)
{
int16_t err = ((ao_pres_to_altitude(ao_raw_pres) - ao_ground_height))
- (int16_t) (ao_k_height >> 16);
#ifdef AO_FLIGHT_TEST
if (ao_flight_tick - ao_flight_prev_tick > 5) {
ao_k_height += ((ao_k_speed >> 16) * AO_K_STEP_10 +
(ao_k_accel >> 16) * AO_K_STEP_2_2_10);
ao_k_speed += (ao_k_accel >> 16) * AO_K_STEP_10;
/* correct */
ao_k_height += (int32_t) AO_K0_10 * err;
ao_k_speed += (int32_t) AO_K1_10 * err;
ao_k_accel += (int32_t) AO_K2_10 * err;
return;
}
#endif
ao_k_height += ((ao_k_speed >> 16) * AO_K_STEP_100 +
(ao_k_accel >> 16) * AO_K_STEP_2_2_100);
ao_k_speed += (ao_k_accel >> 16) * AO_K_STEP_100;
/* correct */
ao_k_height += (int32_t) AO_K0_100 * err;
ao_k_speed += (int32_t) AO_K1_100 * err;
ao_k_accel += (int32_t) AO_K2_100 * err;
}
#endif
__xdata int32_t ao_raw_pres_sum;
/* Landing is detected by getting constant readings from both pressure and accelerometer
* for a fairly long time (AO_INTERVAL_TICKS)
*/
#define AO_INTERVAL_TICKS AO_SEC_TO_TICKS(5)
#define abs(a) ((a) < 0 ? -(a) : (a))
void
ao_flight(void)
{
__pdata static uint16_t nsamples = 0;
ao_flight_adc = ao_adc_head;
ao_raw_pres = 0;
#if HAS_ACCEL
ao_raw_accel_prev = 0;
ao_raw_accel = 0;
#endif
ao_flight_tick = 0;
for (;;) {
ao_wakeup(DATA_TO_XDATA(&ao_flight_adc));
ao_sleep(DATA_TO_XDATA(&ao_adc_head));
while (ao_flight_adc != ao_adc_head) {
#if HAS_ACCEL
__pdata uint8_t ticks;
__pdata int16_t ao_vel_change;
#endif
__xdata struct ao_adc *ao_adc;
ao_flight_prev_tick = ao_flight_tick;
/* Capture a sample */
ao_adc = &ao_adc_ring[ao_flight_adc];
ao_flight_tick = ao_adc->tick;
ao_raw_pres = ao_adc->pres;
ao_flight_pres -= ao_flight_pres >> 4;
ao_flight_pres += ao_raw_pres >> 4;
#if HAS_ACCEL
ao_raw_accel = ao_adc->accel;
#if HAS_ACCEL_REF
/*
* Ok, the math here is a bit tricky.
*
* ao_raw_accel: ADC output for acceleration
* ao_accel_ref: ADC output for the 5V reference.
* ao_cook_accel: Corrected acceleration value
* Vcc: 3.3V supply to the CC1111
* Vac: 5V supply to the accelerometer
* accel: input voltage to accelerometer ADC pin
* ref: input voltage to 5V reference ADC pin
*
*
* Measured acceleration is ratiometric to Vcc:
*
* ao_raw_accel accel
* ------------ = -----
* 32767 Vcc
*
* Measured 5v reference is also ratiometric to Vcc:
*
* ao_accel_ref ref
* ------------ = -----
* 32767 Vcc
*
*
* ao_accel_ref = 32767 * (ref / Vcc)
*
* Acceleration is measured ratiometric to the 5V supply,
* so what we want is:
*
* ao_cook_accel accel
* ------------- = -----
* 32767 ref
*
*
* accel Vcc
* = ----- * ---
* Vcc ref
*
* ao_raw_accel 32767
* = ------------ * ------------
* 32737 ao_accel_ref
*
* Multiply through by 32767:
*
* ao_raw_accel * 32767
* ao_cook_accel = --------------------
* ao_accel_ref
*
* Now, the tricky part. Getting this to compile efficiently
* and keeping all of the values in-range.
*
* First off, we need to use a shift of 16 instead of * 32767 as SDCC
* does the obvious optimizations for byte-granularity shifts:
*
* ao_cook_accel = (ao_raw_accel << 16) / ao_accel_ref
*
* Next, lets check our input ranges:
*
* 0 <= ao_raw_accel <= 0x7fff (singled ended ADC conversion)
* 0x7000 <= ao_accel_ref <= 0x7fff (the 5V ref value is close to 0x7fff)
*
* Plugging in our input ranges, we get an output range of 0 - 0x12490,
* which is 17 bits. That won't work. If we take the accel ref and shift
* by a bit, we'll change its range:
*
* 0xe000 <= ao_accel_ref<<1 <= 0xfffe
*
* ao_cook_accel = (ao_raw_accel << 16) / (ao_accel_ref << 1)
*
* Now the output range is 0 - 0x9248, which nicely fits in 16 bits. It
* is, however, one bit too large for our signed computations. So, we
* take the result and shift that by a bit:
*
* ao_cook_accel = ((ao_raw_accel << 16) / (ao_accel_ref << 1)) >> 1
*
* This finally creates an output range of 0 - 0x4924. As the ADC only
* provides 11 bits of data, we haven't actually lost any precision,
* just dropped a bit of noise off the low end.
*/
ao_raw_accel = (uint16_t) ((((uint32_t) ao_raw_accel << 16) / (ao_accel_ref[ao_flight_adc] << 1))) >> 1;
ao_adc->accel = ao_raw_accel;
#endif
ao_flight_accel -= ao_flight_accel >> 4;
ao_flight_accel += ao_raw_accel >> 4;
/* Update velocity
*
* The accelerometer is mounted so that
* acceleration yields negative values
* while deceleration yields positive values,
* so subtract instead of add.
*/
ticks = ao_flight_tick - ao_flight_prev_tick;
ao_vel_change = ao_ground_accel - (((ao_raw_accel + 1) >> 1) + ((ao_raw_accel_prev + 1) >> 1));
ao_raw_accel_prev = ao_raw_accel;
/* one is a common interval */
if (ticks == 1)
ao_flight_vel += (int32_t) ao_vel_change;
else
ao_flight_vel += (int32_t) ao_vel_change * (int32_t) ticks;
#endif
#if USE_KALMAN
if (ao_flight_state > ao_flight_idle)
ao_kalman_baro();
#endif
ao_flight_adc = ao_adc_ring_next(ao_flight_adc);
}
if (ao_flight_pres < ao_min_pres)
ao_min_pres = ao_flight_pres;
#if HAS_ACCEL
if (ao_flight_vel >= 0) {
if (ao_flight_vel < ao_min_vel)
ao_min_vel = ao_flight_vel;
} else {
if (-ao_flight_vel < ao_min_vel)
ao_min_vel = -ao_flight_vel;
}
#endif
switch (ao_flight_state) {
case ao_flight_startup:
/* startup state:
*
* Collect 512 samples of acceleration and pressure
* data and average them to find the resting values
*/
if (nsamples < 512) {
#if HAS_ACCEL
ao_raw_accel_sum += ao_raw_accel;
#endif
ao_raw_pres_sum += ao_raw_pres;
++nsamples;
continue;
}
#if HAS_ACCEL
ao_ground_accel = ao_raw_accel_sum >> 9;
#endif
ao_ground_pres = ao_raw_pres_sum >> 9;
ao_min_pres = ao_ground_pres;
ao_config_get();
#if USE_KALMAN
ao_ground_height = ao_pres_to_altitude(ao_ground_pres);
#endif
ao_main_pres = ao_altitude_to_pres(ao_pres_to_altitude(ao_ground_pres) + ao_config.main_deploy);
#if HAS_ACCEL
ao_accel_2g = ao_config.accel_minus_g - ao_config.accel_plus_g;
ao_flight_vel = 0;
ao_min_vel = 0;
ao_old_vel = ao_flight_vel;
ao_old_vel_tick = ao_flight_tick;
#endif
/* Check to see what mode we should go to.
* - Invalid mode if accel cal appears to be out
* - pad mode if we're upright,
* - idle mode otherwise
*/
ao_config_get();
#if HAS_ACCEL
if (ao_config.accel_plus_g == 0 ||
ao_config.accel_minus_g == 0 ||
ao_flight_accel < ao_config.accel_plus_g - ACCEL_NOSE_UP ||
ao_flight_accel > ao_config.accel_minus_g + ACCEL_NOSE_UP)
{
/* Detected an accel value outside -1.5g to 1.5g
* (or uncalibrated values), so we go into invalid mode
*/
ao_flight_state = ao_flight_invalid;
} else
#endif
if (!ao_flight_force_idle
#if HAS_ACCEL
&& ao_flight_accel < ao_config.accel_plus_g + ACCEL_NOSE_UP
#endif
)
{
/* Set pad mode - we can fly! */
ao_flight_state = ao_flight_pad;
#if HAS_USB
/* Disable the USB controller in flight mode
* to save power
*/
ao_usb_disable();
#endif
/* Disable packet mode in pad state */
ao_packet_slave_stop();
/* Turn on telemetry system */
ao_rdf_set(1);
ao_telemetry_set_interval(AO_TELEMETRY_INTERVAL_PAD);
/* signal successful initialization by turning off the LED */
ao_led_off(AO_LED_RED);
} else {
/* Set idle mode */
ao_flight_state = ao_flight_idle;
/* signal successful initialization by turning off the LED */
ao_led_off(AO_LED_RED);
}
/* wakeup threads due to state change */
ao_wakeup(DATA_TO_XDATA(&ao_flight_state));
break;
case ao_flight_pad:
#if HAS_ACCEL
/* Trim velocity
*
* Once a second, remove any velocity from
* a second ago
*/
if ((int16_t) (ao_flight_tick - ao_old_vel_tick) >= AO_SEC_TO_TICKS(1)) {
ao_old_vel_tick = ao_flight_tick;
ao_flight_vel -= ao_old_vel;
ao_old_vel = ao_flight_vel;
}
#endif
/* pad to boost:
*
* accelerometer: > 2g AND velocity > 5m/s
* OR
* barometer: > 20m vertical motion
*
* The accelerometer should always detect motion before
* the barometer, but we use both to make sure this
* transition is detected
*/
#if USE_KALMAN
#if HAS_ACCEL
/*
* With an accelerometer, either to detect launch
*/
if ((ao_k_accel > to_fix32(20) &&
ao_k_speed > to_fix32(5)) ||
ao_k_height > to_fix32(20))
#else
/*
* Without an accelerometer, the barometer is far too
* noisy to rely on speed or acceleration data
*/
if (ao_k_height > to_fix32(20))
#endif
#else
if (
#if HAS_ACCEL
(ao_flight_accel < ao_ground_accel - ACCEL_BOOST &&
ao_flight_vel > ACCEL_VEL_BOOST) ||
#endif
ao_flight_pres < ao_ground_pres - BARO_LAUNCH)
#endif
{
#if HAS_ACCEL || USE_KALMAN
ao_flight_state = ao_flight_boost;
#else
ao_flight_state = ao_flight_coast;
#endif
ao_launch_tick = ao_flight_tick;
/* start logging data */
ao_log_start();
/* Increase telemetry rate */
ao_telemetry_set_interval(AO_TELEMETRY_INTERVAL_FLIGHT);
/* disable RDF beacon */
ao_rdf_set(0);
#if HAS_GPS
/* Record current GPS position by waking up GPS log tasks */
ao_wakeup(&ao_gps_data);
ao_wakeup(&ao_gps_tracking_data);
#endif
ao_wakeup(DATA_TO_XDATA(&ao_flight_state));
break;
}
break;
#if HAS_ACCEL || USE_KALMAN
case ao_flight_boost:
/* boost to fast:
*
* accelerometer: start to fall at > 1/4 G
* OR
* time: boost for more than 15 seconds
*
* Detects motor burn out by the switch from acceleration to
* deceleration, or by waiting until the maximum burn duration
* (15 seconds) has past.
*/
#if USE_KALMAN
if ((ao_k_accel < to_fix32(-10) && ao_k_height > to_fix32(100)) ||
(int16_t) (ao_flight_tick - ao_launch_tick) > BOOST_TICKS_MAX)
#else
if (ao_flight_accel > ao_ground_accel + ACCEL_COAST ||
(int16_t) (ao_flight_tick - ao_launch_tick) > BOOST_TICKS_MAX)
#endif
{
ao_flight_state = ao_flight_fast;
ao_wakeup(DATA_TO_XDATA(&ao_flight_state));
break;
}
break;
case ao_flight_fast:
/* fast to coast:
*
* accelerometer: integrated velocity < 200 m/s
* OR
* barometer: fall at least 500m from max altitude
*
* This extra state is required to avoid mis-detecting
* apogee due to mach transitions.
*
* XXX this is essentially a single-detector test
* as the 500m altitude change would likely result
* in a loss of the rocket. More data on precisely
* how big a pressure change the mach transition
* generates would be useful here.
*/
#if USE_KALMAN
if (ao_k_speed < to_fix32(200) ||
ao_k_height < ao_k_max_height - to_fix32(500))
#else
if (ao_flight_vel < ACCEL_VEL_MACH ||
ao_flight_pres > ao_min_pres + BARO_COAST)
#endif
{
#if HAS_ACCEL
/* set min velocity to current velocity for
* apogee detect
*/
ao_min_vel = abs(ao_flight_vel);
#endif
ao_flight_state = ao_flight_coast;
ao_wakeup(DATA_TO_XDATA(&ao_flight_state));
}
break;
#endif /* HAS_ACCEL */
case ao_flight_coast:
#if USE_KALMAN
/* apogee detect: coast to drogue deploy:
*
* speed: < 0
*/
if (ao_k_speed < 0)
#else
/* apogee detect: coast to drogue deploy:
*
* barometer: fall at least 10m
*
* It would be nice to use the accelerometer
* to detect apogee as well, but tests have
* shown that flights far from vertical would
* grossly mis-detect apogee. So, for now,
* we'll trust to a single sensor for this test
*/
if (ao_flight_pres > ao_min_pres + BARO_APOGEE)
#endif
{
/* ignite the drogue charge */
ao_ignite(ao_igniter_drogue);
/* slow down the telemetry system */
ao_telemetry_set_interval(AO_TELEMETRY_INTERVAL_RECOVER);
/* slow down the ADC sample rate */
ao_timer_set_adc_interval(10);
/*
* Start recording min/max accel and pres for a while
* to figure out when the rocket has landed
*/
/* Set the 'last' limits to max range to prevent
* early resting detection
*/
#if HAS_ACCEL
ao_interval_min_accel = 0;
ao_interval_max_accel = 0x7fff;
#endif
ao_interval_min_pres = 0;
ao_interval_max_pres = 0x7fff;
/* initialize interval values */
ao_interval_end = ao_flight_tick + AO_INTERVAL_TICKS;
ao_interval_cur_min_pres = ao_interval_cur_max_pres = ao_flight_pres;
#if HAS_ACCEL
ao_interval_cur_min_accel = ao_interval_cur_max_accel = ao_flight_accel;
#endif
/* and enter drogue state */
ao_flight_state = ao_flight_drogue;
ao_wakeup(DATA_TO_XDATA(&ao_flight_state));
}
break;
case ao_flight_drogue:
/* drogue to main deploy:
*
* barometer: reach main deploy altitude
*
* Would like to use the accelerometer for this test, but
* the orientation of the flight computer is unknown after
* drogue deploy, so we ignore it. Could also detect
* high descent rate using the pressure sensor to
* recognize drogue deploy failure and eject the main
* at that point. Perhaps also use the drogue sense lines
* to notice continutity?
*/
#if USE_KALMAN
if (from_fix(ao_k_height) < ao_config.main_deploy)
#else
if (ao_flight_pres >= ao_main_pres)
#endif
{
ao_ignite(ao_igniter_main);
ao_flight_state = ao_flight_main;
ao_wakeup(DATA_TO_XDATA(&ao_flight_state));
}
/* fall through... */
case ao_flight_main:
/* drogue/main to land:
*
* accelerometer: value stable
* AND
* barometer: altitude stable and within 1000m of the launch altitude
*/
if (ao_flight_pres < ao_interval_cur_min_pres)
ao_interval_cur_min_pres = ao_flight_pres;
if (ao_flight_pres > ao_interval_cur_max_pres)
ao_interval_cur_max_pres = ao_flight_pres;
#if HAS_ACCEL
if (ao_flight_accel < ao_interval_cur_min_accel)
ao_interval_cur_min_accel = ao_flight_accel;
if (ao_flight_accel > ao_interval_cur_max_accel)
ao_interval_cur_max_accel = ao_flight_accel;
#endif
if ((int16_t) (ao_flight_tick - ao_interval_end) >= 0) {
ao_interval_max_pres = ao_interval_cur_max_pres;
ao_interval_min_pres = ao_interval_cur_min_pres;
ao_interval_cur_min_pres = ao_interval_cur_max_pres = ao_flight_pres;
#if HAS_ACCEL
ao_interval_max_accel = ao_interval_cur_max_accel;
ao_interval_min_accel = ao_interval_cur_min_accel;
ao_interval_cur_min_accel = ao_interval_cur_max_accel = ao_flight_accel;
#endif
ao_interval_end = ao_flight_tick + AO_INTERVAL_TICKS;
if (
#if HAS_ACCEL
(uint16_t) (ao_interval_max_accel - ao_interval_min_accel) < (uint16_t) ACCEL_INT_LAND &&
#endif
ao_flight_pres > ao_ground_pres - BARO_LAND &&
(uint16_t) (ao_interval_max_pres - ao_interval_min_pres) < (uint16_t) BARO_INT_LAND)
{
ao_flight_state = ao_flight_landed;
/* turn off the ADC capture */
ao_timer_set_adc_interval(0);
/* Enable RDF beacon */
ao_rdf_set(1);
ao_wakeup(DATA_TO_XDATA(&ao_flight_state));
}
}
break;
case ao_flight_landed:
break;
}
}
}
static __xdata struct ao_task flight_task;
void
ao_flight_init(void)
{
ao_flight_state = ao_flight_startup;
ao_add_task(&flight_task, ao_flight, "flight");
}
|