1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
|
/*
* Copyright © 2009 Keith Packard <keithp@keithp.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/
#ifndef AO_FLIGHT_TEST
#include "ao.h"
#endif
/* Main flight thread. */
__pdata enum ao_flight_state ao_flight_state; /* current flight state */
__pdata uint16_t ao_flight_tick; /* time of last data */
__pdata uint16_t ao_flight_prev_tick; /* time of previous data */
__pdata int16_t ao_flight_accel; /* filtered acceleration */
__pdata int16_t ao_flight_pres; /* filtered pressure */
__pdata int16_t ao_ground_pres; /* startup pressure */
__pdata int16_t ao_ground_accel; /* startup acceleration */
__pdata int16_t ao_min_pres; /* minimum recorded pressure */
__pdata uint16_t ao_launch_tick; /* time of launch detect */
__pdata int16_t ao_main_pres; /* pressure to eject main */
/*
* track min/max data over a long interval to detect
* resting
*/
__pdata uint16_t ao_interval_end;
__pdata int16_t ao_interval_cur_min_accel;
__pdata int16_t ao_interval_cur_max_accel;
__pdata int16_t ao_interval_cur_min_pres;
__pdata int16_t ao_interval_cur_max_pres;
__pdata int16_t ao_interval_min_accel;
__pdata int16_t ao_interval_max_accel;
__pdata int16_t ao_interval_min_pres;
__pdata int16_t ao_interval_max_pres;
__data uint8_t ao_flight_adc;
__pdata int16_t ao_raw_accel, ao_raw_accel_prev, ao_raw_pres;
/* Accelerometer calibration
*
* We're sampling the accelerometer through a resistor divider which
* consists of 5k and 10k resistors. This multiplies the values by 2/3.
* That goes into the cc1111 A/D converter, which is running at 11 bits
* of precision with the bits in the MSB of the 16 bit value. Only positive
* values are used, so values should range from 0-32752 for 0-3.3V. The
* specs say we should see 40mV/g (uncalibrated), multiply by 2/3 for what
* the A/D converter sees (26.67 mV/g). We should see 32752/3300 counts/mV,
* for a final computation of:
*
* 26.67 mV/g * 32767/3300 counts/mV = 264.8 counts/g
*
* Zero g was measured at 16000 (we would expect 16384).
* Note that this value is only require to tell if the
* rocket is standing upright. Once that is determined,
* the value of the accelerometer is averaged for 100 samples
* to find the resting accelerometer value, which is used
* for all further flight computations
*/
#define GRAVITY 9.80665
/* convert m/s to velocity count */
#define VEL_MPS_TO_COUNT(mps) ((int32_t) (((mps) / GRAVITY) * ACCEL_G * 100))
#define ACCEL_G 265
#define ACCEL_ZERO_G 16000
#define ACCEL_NOSE_UP (ACCEL_G * 2 /3)
#define ACCEL_BOOST ACCEL_G * 2
#define ACCEL_INT_LAND (ACCEL_G / 10)
#define ACCEL_VEL_LAND VEL_MPS_TO_COUNT(10)
#define ACCEL_VEL_MACH VEL_MPS_TO_COUNT(200)
#define ACCEL_VEL_APOGEE VEL_MPS_TO_COUNT(2)
#define ACCEL_VEL_MAIN VEL_MPS_TO_COUNT(100)
/*
* Barometer calibration
*
* We directly sample the barometer. The specs say:
*
* Pressure range: 15-115 kPa
* Voltage at 115kPa: 2.82
* Output scale: 27mV/kPa
*
* If we want to detect launch with the barometer, we need
* a large enough bump to not be fooled by noise. At typical
* launch elevations (0-2000m), a 200Pa pressure change cooresponds
* to about a 20m elevation change. This is 5.4mV, or about 3LSB.
* As all of our calculations are done in 16 bits, we'll actually see a change
* of 16 times this though
*
* 27 mV/kPa * 32767 / 3300 counts/mV = 268.1 counts/kPa
*/
#define BARO_kPa 268
#define BARO_LAUNCH (BARO_kPa / 5) /* .2kPa, or about 20m */
#define BARO_APOGEE (BARO_kPa / 10) /* .1kPa, or about 10m */
#define BARO_COAST (BARO_kPa * 5) /* 5kpa, or about 500m */
#define BARO_MAIN (BARO_kPa) /* 1kPa, or about 100m */
#define BARO_INT_LAND (BARO_kPa / 20) /* .05kPa, or about 5m */
#define BARO_LAND (BARO_kPa * 10) /* 10kPa or about 1000m */
/* We also have a clock, which can be used to sanity check things in
* case of other failures
*/
#define BOOST_TICKS_MAX AO_SEC_TO_TICKS(15)
/* This value is scaled in a weird way. It's a running total of accelerometer
* readings minus the ground accelerometer reading. That means it measures
* velocity, and quite accurately too. As it gets updated 100 times a second,
* it's scaled by 100
*/
__pdata int32_t ao_flight_vel;
__pdata int32_t ao_min_vel;
__xdata int32_t ao_raw_accel_sum, ao_raw_pres_sum;
/* Landing is detected by getting constant readings from both pressure and accelerometer
* for a fairly long time (AO_INTERVAL_TICKS)
*/
#define AO_INTERVAL_TICKS AO_SEC_TO_TICKS(20)
#define abs(a) ((a) < 0 ? -(a) : (a))
void
ao_flight(void)
{
__pdata static uint8_t nsamples = 0;
ao_flight_adc = ao_adc_head;
ao_raw_accel_prev = 0;
ao_raw_accel = 0;
ao_raw_pres = 0;
ao_interval_cur_min_pres = 0x7fff;
ao_interval_cur_max_pres = -0x7fff;
ao_interval_cur_min_accel = 0x7fff;
ao_interval_cur_max_accel = -0x7fff;
ao_flight_tick = 0;
for (;;) {
ao_sleep(&ao_adc_ring);
while (ao_flight_adc != ao_adc_head) {
__pdata uint8_t ticks;
__pdata int16_t ao_vel_change;
ao_flight_prev_tick = ao_flight_tick;
/* Capture a sample */
ao_raw_accel = ao_adc_ring[ao_flight_adc].accel;
ao_raw_pres = ao_adc_ring[ao_flight_adc].pres;
ao_flight_tick = ao_adc_ring[ao_flight_adc].tick;
/* Update velocity
*
* The accelerometer is mounted so that
* acceleration yields negative values
* while deceleration yields positive values,
* so subtract instead of add.
*/
ticks = ao_flight_tick - ao_flight_prev_tick;
ao_vel_change = (((ao_raw_accel + ao_raw_accel_prev) >> 1) - ao_ground_accel);
ao_raw_accel_prev = ao_raw_accel;
/* one is a common interval */
if (ticks == 1)
ao_flight_vel -= (int32_t) ao_vel_change;
else
ao_flight_vel -= (int32_t) ao_vel_change * (int32_t) ticks;
ao_flight_adc = ao_adc_ring_next(ao_flight_adc);
}
ao_flight_accel -= ao_flight_accel >> 4;
ao_flight_accel += ao_raw_accel >> 4;
ao_flight_pres -= ao_flight_pres >> 4;
ao_flight_pres += ao_raw_pres >> 4;
if (ao_flight_pres < ao_min_pres)
ao_min_pres = ao_flight_pres;
if (ao_flight_vel >= 0) {
if (ao_flight_vel < ao_min_vel)
ao_min_vel = ao_flight_vel;
} else {
if (-ao_flight_vel < ao_min_vel)
ao_min_vel = -ao_flight_vel;
}
if (ao_flight_pres < ao_interval_cur_min_pres)
ao_interval_cur_min_pres = ao_flight_pres;
if (ao_flight_pres > ao_interval_cur_max_pres)
ao_interval_cur_max_pres = ao_flight_pres;
if (ao_flight_accel < ao_interval_cur_min_accel)
ao_interval_cur_min_accel = ao_flight_accel;
if (ao_flight_accel > ao_interval_cur_max_accel)
ao_interval_cur_max_accel = ao_flight_accel;
if ((int16_t) (ao_flight_tick - ao_interval_end) >= 0) {
ao_interval_max_pres = ao_interval_cur_max_pres;
ao_interval_min_pres = ao_interval_cur_min_pres;
ao_interval_max_accel = ao_interval_cur_max_accel;
ao_interval_min_accel = ao_interval_cur_min_accel;
ao_interval_end = ao_flight_tick + AO_INTERVAL_TICKS;
ao_interval_cur_min_pres = ao_interval_cur_max_pres = ao_flight_pres;
ao_interval_cur_min_accel = ao_interval_cur_max_accel = ao_flight_accel;
}
switch (ao_flight_state) {
case ao_flight_startup:
/* startup state:
*
* Collect 100 samples of acceleration and pressure
* data and average them to find the resting values
*/
if (nsamples < 100) {
ao_raw_accel_sum += ao_raw_accel;
ao_raw_pres_sum += ao_raw_pres;
++nsamples;
continue;
}
ao_ground_accel = (ao_raw_accel_sum / nsamples);
ao_ground_pres = (ao_raw_pres_sum / nsamples);
ao_min_pres = ao_ground_pres;
ao_config_get();
ao_main_pres = ao_altitude_to_pres(ao_pres_to_altitude(ao_ground_pres) + ao_config.main_deploy);
ao_flight_vel = 0;
ao_min_vel = 0;
ao_interval_end = ao_flight_tick;
/* Go to launchpad state if the nose is pointing up */
ao_config_get();
if (ao_flight_accel < ao_config.accel_zero_g - ACCEL_NOSE_UP) {
/* Disable the USB controller in flight mode
* to save power
*/
ao_usb_disable();
/* Turn on telemetry system
*/
ao_rdf_set(1);
ao_telemetry_set_interval(AO_TELEMETRY_INTERVAL_FLIGHT);
ao_flight_state = ao_flight_launchpad;
ao_wakeup(DATA_TO_XDATA(&ao_flight_state));
} else {
ao_flight_state = ao_flight_idle;
/* Turn on the Green LED in idle mode
*/
ao_led_on(AO_LED_GREEN);
ao_wakeup(DATA_TO_XDATA(&ao_flight_state));
}
/* signal successful initialization by turning off the LED */
ao_led_off(AO_LED_RED);
break;
case ao_flight_launchpad:
/* pad to boost:
*
* accelerometer: > 2g
* OR
* barometer: > 20m vertical motion
*
* The accelerometer should always detect motion before
* the barometer, but we use both to make sure this
* transition is detected
*/
if (ao_flight_accel < ao_ground_accel - ACCEL_BOOST ||
ao_flight_pres < ao_ground_pres - BARO_LAUNCH)
{
ao_flight_state = ao_flight_boost;
ao_launch_tick = ao_flight_tick;
/* start logging data */
ao_log_start();
/* disable RDF beacon */
ao_rdf_set(0);
ao_wakeup(DATA_TO_XDATA(&ao_flight_state));
break;
}
break;
case ao_flight_boost:
/* boost to coast:
*
* accelerometer: start to fall at > 1/4 G
* OR
* time: boost for more than 15 seconds
*
* Detects motor burn out by the switch from acceleration to
* deceleration, or by waiting until the maximum burn duration
* (15 seconds) has past.
*/
if (ao_flight_accel > ao_ground_accel + (ACCEL_G >> 2) ||
(int16_t) (ao_flight_tick - ao_launch_tick) > BOOST_TICKS_MAX)
{
ao_flight_state = ao_flight_coast;
ao_wakeup(DATA_TO_XDATA(&ao_flight_state));
break;
}
break;
case ao_flight_coast:
/* coast to apogee detect:
*
* accelerometer: integrated velocity < 200 m/s
* OR
* barometer: fall at least 500m from max altitude
*
* This extra state is required to avoid mis-detecting
* apogee due to mach transitions.
*
* XXX this is essentially a single-detector test
* as the 500m altitude change would likely result
* in a loss of the rocket. More data on precisely
* how big a pressure change the mach transition
* generates would be useful here.
*/
if (ao_flight_vel < ACCEL_VEL_MACH ||
ao_flight_pres > ao_min_pres + BARO_COAST)
{
/* set min velocity to current velocity for
* apogee detect
*/
ao_min_vel = ao_flight_vel;
ao_flight_state = ao_flight_apogee;
ao_wakeup(DATA_TO_XDATA(&ao_flight_state));
}
break;
case ao_flight_apogee:
/* apogee detect to drogue deploy:
*
* accelerometer: abs(velocity) > min_velocity + 2m/s
* OR
* barometer: fall at least 10m
*
* If the barometer saturates because the flight
* goes over its measuring range (about 53k'),
* requiring a 10m fall will avoid prematurely
* detecting apogee; the accelerometer will take
* over in that case and the integrated velocity
* measurement should suffice to find apogee
*/
if (abs(ao_flight_vel) > ao_min_vel + ACCEL_VEL_APOGEE ||
ao_flight_pres > ao_min_pres + BARO_APOGEE)
{
/* ignite the drogue charge */
ao_ignite(ao_igniter_drogue);
/* slow down the telemetry system */
ao_telemetry_set_interval(AO_TELEMETRY_INTERVAL_RECOVER);
/* slow down the ADC sample rate */
ao_timer_set_adc_interval(10);
/* Enable RDF beacon */
ao_rdf_set(1);
ao_flight_state = ao_flight_drogue;
ao_wakeup(DATA_TO_XDATA(&ao_flight_state));
}
break;
case ao_flight_drogue:
/* drogue to main deploy:
*
* accelerometer: abs(velocity) > 100m/s (in case the drogue failed)
* OR
* barometer: reach main deploy altitude
*/
if (ao_flight_vel < -ACCEL_VEL_MAIN ||
ao_flight_vel > ACCEL_VEL_MAIN ||
ao_flight_pres >= ao_main_pres)
{
ao_ignite(ao_igniter_main);
ao_flight_state = ao_flight_main;
ao_wakeup(DATA_TO_XDATA(&ao_flight_state));
}
/* fall through... */
case ao_flight_main:
/* drogue/main to land:
*
* accelerometer: value stable and velocity less than 10m/s
* OR
* barometer: altitude stable and within 1000m of the launch altitude
*/
if ((abs(ao_flight_vel) < ACCEL_VEL_LAND &&
(ao_interval_max_accel - ao_interval_min_accel) < ACCEL_INT_LAND) ||
(ao_flight_pres > ao_ground_pres - BARO_LAND &&
(ao_interval_max_pres - ao_interval_min_pres) < BARO_INT_LAND))
{
ao_flight_state = ao_flight_landed;
/* turn off the ADC capture */
ao_timer_set_adc_interval(0);
ao_wakeup(DATA_TO_XDATA(&ao_flight_state));
}
break;
case ao_flight_landed:
break;
}
}
}
#define AO_ACCEL_COUNT_TO_MSS(count) ((count) / 27)
#define AO_VEL_COUNT_TO_MS(count) ((int16_t) ((count) / 2700))
static void
ao_flight_status(void)
{
printf("STATE: %7s accel: %d speed: %d altitude: %d main: %d\n",
ao_state_names[ao_flight_state],
AO_ACCEL_COUNT_TO_MSS(ACCEL_ZERO_G - ao_flight_accel),
AO_VEL_COUNT_TO_MS(ao_flight_vel),
ao_pres_to_altitude(ao_flight_pres),
ao_pres_to_altitude(ao_main_pres));
}
static __xdata struct ao_task flight_task;
__code struct ao_cmds ao_flight_cmds[] = {
{ 'f', ao_flight_status, "f Display current flight state" },
{ 0, ao_flight_status, NULL }
};
void
ao_flight_init(void)
{
ao_flight_state = ao_flight_startup;
ao_interval_min_accel = 0;
ao_interval_max_accel = 0x7fff;
ao_interval_min_pres = 0;
ao_interval_max_pres = 0x7fff;
ao_interval_end = AO_INTERVAL_TICKS;
ao_add_task(&flight_task, ao_flight, "flight");
ao_cmd_register(&ao_flight_cmds[0]);
}
|