1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
/*
* Copyright © 2009 Keith Packard <keithp@keithp.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*/
#include "cc.h"
#include <math.h>
/*
* Pressure Sensor Model, version 1.1
*
* written by Holly Grimes
*
* Uses the International Standard Atmosphere as described in
* "A Quick Derivation relating altitude to air pressure" (version 1.03)
* from the Portland State Aerospace Society, except that the atmosphere
* is divided into layers with each layer having a different lapse rate.
*
* Lapse rate data for each layer was obtained from Wikipedia on Sept. 1, 2007
* at site <http://en.wikipedia.org/wiki/International_Standard_Atmosphere
*
* Height measurements use the local tangent plane. The postive z-direction is up.
*
* All measurements are given in SI units (Kelvin, Pascal, meter, meters/second^2).
* The lapse rate is given in Kelvin/meter, the gas constant for air is given
* in Joules/(kilogram-Kelvin).
*/
#define GRAVITATIONAL_ACCELERATION -9.80665
#define AIR_GAS_CONSTANT 287.053
#define NUMBER_OF_LAYERS 7
#define MAXIMUM_ALTITUDE 84852.0
#define MINIMUM_PRESSURE 0.3734
#define LAYER0_BASE_TEMPERATURE 288.15
#define LAYER0_BASE_PRESSURE 101325
/* lapse rate and base altitude for each layer in the atmosphere */
static const double lapse_rate[NUMBER_OF_LAYERS] = {
-0.0065, 0.0, 0.001, 0.0028, 0.0, -0.0028, -0.002
};
static const int base_altitude[NUMBER_OF_LAYERS] = {
0, 11000, 20000, 32000, 47000, 51000, 71000
};
/* outputs atmospheric pressure associated with the given altitude. altitudes
are measured with respect to the mean sea level */
double
cc_altitude_to_pressure(double altitude)
{
double base_temperature = LAYER0_BASE_TEMPERATURE;
double base_pressure = LAYER0_BASE_PRESSURE;
double pressure;
double base; /* base for function to determine pressure */
double exponent; /* exponent for function to determine pressure */
int layer_number; /* identifies layer in the atmosphere */
int delta_z; /* difference between two altitudes */
if (altitude > MAXIMUM_ALTITUDE) /* FIX ME: use sensor data to improve model */
return 0;
/* calculate the base temperature and pressure for the atmospheric layer
associated with the inputted altitude */
for(layer_number = 0; layer_number < NUMBER_OF_LAYERS - 1 && altitude > base_altitude[layer_number + 1]; layer_number++) {
delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number];
if (lapse_rate[layer_number] == 0.0) {
exponent = GRAVITATIONAL_ACCELERATION * delta_z
/ AIR_GAS_CONSTANT / base_temperature;
base_pressure *= exp(exponent);
}
else {
base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
exponent = GRAVITATIONAL_ACCELERATION /
(AIR_GAS_CONSTANT * lapse_rate[layer_number]);
base_pressure *= pow(base, exponent);
}
base_temperature += delta_z * lapse_rate[layer_number];
}
/* calculate the pressure at the inputted altitude */
delta_z = altitude - base_altitude[layer_number];
if (lapse_rate[layer_number] == 0.0) {
exponent = GRAVITATIONAL_ACCELERATION * delta_z
/ AIR_GAS_CONSTANT / base_temperature;
pressure = base_pressure * exp(exponent);
}
else {
base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
exponent = GRAVITATIONAL_ACCELERATION /
(AIR_GAS_CONSTANT * lapse_rate[layer_number]);
pressure = base_pressure * pow(base, exponent);
}
return pressure;
}
double
cc_altitude_to_temperature(double altitude)
{
double base_temperature = LAYER0_BASE_TEMPERATURE;
double temperature;
int layer_number; /* identifies layer in the atmosphere */
double delta_z; /* difference between two altitudes */
/* calculate the base temperature for the atmospheric layer
associated with the inputted altitude */
for(layer_number = 0; layer_number < NUMBER_OF_LAYERS - 1 && altitude > base_altitude[layer_number + 1]; layer_number++) {
delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number];
base_temperature += delta_z * lapse_rate[layer_number];
}
/* calculate the pressure at the inputted altitude */
delta_z = altitude - base_altitude[layer_number];
temperature = base_temperature + lapse_rate[layer_number] * delta_z;
return temperature - 273.15;
}
/* outputs the altitude associated with the given pressure. the altitude
returned is measured with respect to the mean sea level */
double
cc_pressure_to_altitude(double pressure)
{
double next_base_temperature = LAYER0_BASE_TEMPERATURE;
double next_base_pressure = LAYER0_BASE_PRESSURE;
double altitude;
double base_pressure;
double base_temperature;
double base; /* base for function to determine base pressure of next layer */
double exponent; /* exponent for function to determine base pressure
of next layer */
double coefficient;
int layer_number; /* identifies layer in the atmosphere */
int delta_z; /* difference between two altitudes */
if (pressure < 0) /* illegal pressure */
return -1;
if (pressure < MINIMUM_PRESSURE) /* FIX ME: use sensor data to improve model */
return MAXIMUM_ALTITUDE;
/* calculate the base temperature and pressure for the atmospheric layer
associated with the inputted pressure. */
layer_number = -1;
do {
layer_number++;
base_pressure = next_base_pressure;
base_temperature = next_base_temperature;
delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number];
if (lapse_rate[layer_number] == 0.0) {
exponent = GRAVITATIONAL_ACCELERATION * delta_z
/ AIR_GAS_CONSTANT / base_temperature;
next_base_pressure *= exp(exponent);
}
else {
base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
exponent = GRAVITATIONAL_ACCELERATION /
(AIR_GAS_CONSTANT * lapse_rate[layer_number]);
next_base_pressure *= pow(base, exponent);
}
next_base_temperature += delta_z * lapse_rate[layer_number];
}
while(layer_number < NUMBER_OF_LAYERS - 1 && pressure < next_base_pressure);
/* calculate the altitude associated with the inputted pressure */
if (lapse_rate[layer_number] == 0.0) {
coefficient = (AIR_GAS_CONSTANT / GRAVITATIONAL_ACCELERATION)
* base_temperature;
altitude = base_altitude[layer_number]
+ coefficient * log(pressure / base_pressure);
}
else {
base = pressure / base_pressure;
exponent = AIR_GAS_CONSTANT * lapse_rate[layer_number]
/ GRAVITATIONAL_ACCELERATION;
coefficient = base_temperature / lapse_rate[layer_number];
altitude = base_altitude[layer_number]
+ coefficient * (pow(base, exponent) - 1);
}
return altitude;
}
/*
* Values for our MP3H6115A pressure sensor
*
* From the data sheet:
*
* Pressure range: 15-115 kPa
* Voltage at 115kPa: 2.82
* Output scale: 27mV/kPa
*
*
* 27 mV/kPa * 2047 / 3300 counts/mV = 16.75 counts/kPa
* 2.82V * 2047 / 3.3 counts/V = 1749 counts/115 kPa
*/
static const double counts_per_kPa = 27 * 2047 / 3300;
static const double counts_at_101_3kPa = 1674.0;
double
cc_barometer_to_pressure(double count)
{
return ((count / 16.0) / 2047.0 + 0.095) / 0.009 * 1000.0;
}
double
cc_barometer_to_altitude(double baro)
{
double Pa = cc_barometer_to_pressure(baro);
return cc_pressure_to_altitude(Pa);
}
static const double count_per_mss = 27.0;
double
cc_accelerometer_to_acceleration(double accel, double ground_accel)
{
return (ground_accel - accel) / count_per_mss;
}
/* Value for the CC1111 built-in temperature sensor
* Output voltage at 0°C = 0.755V
* Coefficient = 0.00247V/°C
* Reference voltage = 1.25V
*
* temp = ((value / 32767) * 1.25 - 0.755) / 0.00247
* = (value - 19791.268) / 32768 * 1.25 / 0.00247
*/
double
cc_thermometer_to_temperature(double thermo)
{
return (thermo - 19791.268) / 32728.0 * 1.25 / 0.00247;
}
double
cc_battery_to_voltage(double battery)
{
return battery / 32767.0 * 5.0;
}
double
cc_ignitor_to_voltage(double ignite)
{
return ignite / 32767 * 15.0;
}
static inline double sqr(double a) { return a * a; }
void
cc_great_circle (double start_lat, double start_lon,
double end_lat, double end_lon,
double *dist, double *bearing)
{
const double rad = M_PI / 180;
const double earth_radius = 6371.2 * 1000; /* in meters */
double lat1 = rad * start_lat;
double lon1 = rad * -start_lon;
double lat2 = rad * end_lat;
double lon2 = rad * -end_lon;
// double d_lat = lat2 - lat1;
double d_lon = lon2 - lon1;
/* From http://en.wikipedia.org/wiki/Great-circle_distance */
double vdn = sqrt(sqr(cos(lat2) * sin(d_lon)) +
sqr(cos(lat1) * sin(lat2) -
sin(lat1) * cos(lat2) * cos(d_lon)));
double vdd = sin(lat1) * sin(lat2) + cos(lat1) * cos(lat2) * cos(d_lon);
double d = atan2(vdn,vdd);
double course;
if (cos(lat1) < 1e-20) {
if (lat1 > 0)
course = M_PI;
else
course = -M_PI;
} else {
if (d < 1e-10)
course = 0;
else
course = acos((sin(lat2)-sin(lat1)*cos(d)) /
(sin(d)*cos(lat1)));
if (sin(lon2-lon1) > 0)
course = 2 * M_PI-course;
}
*dist = d * earth_radius;
*bearing = course * 180/M_PI;
}
|