/* * Copyright © 2012 Keith Packard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include "ao.h" #include "ao_usb.h" #include "ao_product.h" #include "ao_power.h" #define USB_DEBUG 0 #define USB_STATUS 0 #define USB_DEBUG_DATA 0 #define USB_ECHO 0 #ifndef AO_PA11_PA12_RMP #error "must define AO_PA11_PA12_RMP" #endif #ifndef AO_POWER_MANAGEMENT #define AO_POWER_MANAGEMENT 0 #endif #ifndef USE_USB_STDIO #define USE_USB_STDIO 1 #endif #if USE_USB_STDIO #define AO_USB_OUT_SLEEP_ADDR (&ao_stdin_ready) #else #define AO_USB_OUT_SLEEP_ADDR (&ao_usb_out_avail) #endif #if USB_DEBUG #define debug(format, args...) printf(format, ## args); #else #define debug(format, args...) #endif #if USB_DEBUG_DATA #define debug_data(format, args...) printf(format, ## args); #else #define debug_data(format, args...) #endif struct ao_usb_setup { uint8_t dir_type_recip; uint8_t request; uint16_t value; uint16_t index; uint16_t length; } ao_usb_setup; static uint8_t ao_usb_ep0_state; /* Pending EP0 IN data */ static const uint8_t *ao_usb_ep0_in_data; /* Remaining data */ static uint8_t ao_usb_ep0_in_len; /* Remaining amount */ /* Temp buffer for smaller EP0 in data */ static uint8_t ao_usb_ep0_in_buf[2]; /* Pending EP0 OUT data */ static uint8_t *ao_usb_ep0_out_data; static uint8_t ao_usb_ep0_out_len; /* * Objects allocated in special USB memory */ /* Buffer description tables */ static union stm_usb_bdt *ao_usb_bdt; /* USB address of end of allocated storage */ #if AO_USB_DIRECTIO static uint16_t ao_usb_sram_addr; #endif /* Pointer to ep0 tx/rx buffers in USB memory */ static uint16_t *ao_usb_ep0_tx_buffer; static uint16_t *ao_usb_ep0_rx_buffer; #if AO_USB_HAS_INT /* Pointer to interrupt buffer in USB memory */ static uint16_t ao_usb_int_tx_offset; #endif /* Pointer to bulk data tx/rx buffers in USB memory */ #if AO_USB_HAS_IN static uint16_t ao_usb_in_tx_offset; static uint16_t *ao_usb_in_tx_buffer; /* System ram shadow of USB buffer; writing individual bytes is * too much of a pain (sigh) */ static uint8_t ao_usb_tx_buffer[AO_USB_IN_SIZE]; static uint8_t ao_usb_tx_count; #endif #if AO_USB_HAS_OUT static uint16_t ao_usb_out_rx_offset; static uint16_t *ao_usb_out_rx_buffer; /* System ram shadow of USB buffer; writing individual bytes is * too much of a pain (sigh) */ static uint8_t ao_usb_rx_buffer[AO_USB_OUT_SIZE]; static uint8_t ao_usb_rx_count, ao_usb_rx_pos; #endif #if AO_USB_HAS_IN2 static uint16_t ao_usb_in2_tx_offset; static uint16_t *ao_usb_in2_tx_buffer; /* System ram shadow of USB buffer; writing individual bytes is * too much of a pain (sigh) */ static uint8_t ao_usb_tx2_buffer[AO_USB_IN_SIZE]; static uint8_t ao_usb_tx2_count; #endif /* * End point register indices */ #define AO_USB_CONTROL_EPR 0 #define AO_USB_INT_EPR 1 #define AO_USB_OUT_EPR 2 #define AO_USB_IN_EPR 3 #define AO_USB_IN2_EPR 4 /* Marks when we don't need to send an IN packet. * This happens only when the last IN packet is not full, * otherwise the host will expect to keep seeing packets. * Send a zero-length packet as required */ static uint8_t ao_usb_in_flushed; /* Marks when we have delivered an IN packet to the hardware * and it has not been received yet. ao_sleep on this address * to wait for it to be delivered. */ static uint8_t ao_usb_in_pending; #if AO_USB_HAS_IN2 /* Marks when we have delivered an IN packet to the hardware * and it has not been received yet. ao_sleep on this address * to wait for it to be delivered. */ static uint8_t ao_usb_in2_pending; static uint16_t in2_count; static uint8_t ao_usb_in2_flushed; #endif /* Marks when an OUT packet has been received by the hardware * but not pulled to the shadow buffer. */ static uint8_t ao_usb_out_avail; uint8_t ao_usb_running; static uint8_t ao_usb_configuration; #define AO_USB_EP0_GOT_SETUP 1 #define AO_USB_EP0_GOT_RX_DATA 2 #define AO_USB_EP0_GOT_TX_ACK 4 static uint8_t ao_usb_ep0_receive; static uint8_t ao_usb_address; static uint8_t ao_usb_address_pending; static inline uint32_t set_toggle(uint32_t current_value, uint32_t mask, uint32_t desired_value) { return (current_value ^ desired_value) & mask; } static inline uint16_t *ao_usb_packet_buffer_addr(uint16_t sram_addr) { return (uint16_t *) (void *) (stm_usb_sram + sram_addr); } static inline uint16_t ao_usb_packet_buffer_offset(uint16_t *addr) { return (uint16_t) ((uint8_t *) addr - stm_usb_sram); } static inline uint32_t ao_usb_epr_stat_rx(uint32_t epr) { return (epr >> STM_USB_EPR_STAT_RX) & STM_USB_EPR_STAT_RX_MASK; } static inline uint32_t ao_usb_epr_stat_tx(uint32_t epr) { return (epr >> STM_USB_EPR_STAT_TX) & STM_USB_EPR_STAT_TX_MASK; } static inline uint32_t ao_usb_epr_ctr_rx(uint32_t epr) { return (epr >> STM_USB_EPR_CTR_RX) & 1; } static inline uint32_t ao_usb_epr_ctr_tx(uint32_t epr) { return (epr >> STM_USB_EPR_CTR_TX) & 1; } static inline uint32_t ao_usb_epr_setup(uint32_t epr) { return (epr >> STM_USB_EPR_SETUP) & 1; } static inline uint32_t ao_usb_epr_dtog_rx(uint32_t epr) { return (epr >> STM_USB_EPR_DTOG_RX) & 1; } static inline uint32_t ao_usb_epr_dtog_tx(uint32_t epr) { return (epr >> STM_USB_EPR_DTOG_TX) & 1; } /* * Set current device address and mark the * interface as active */ void ao_usb_set_address(uint8_t address) { debug("ao_usb_set_address %02x\n", address); stm_usb.daddr = (1 << STM_USB_DADDR_EF) | address; ao_usb_address_pending = 0; } /* * Write these values to preserve register contents under HW changes */ #define STM_USB_EPR_INVARIANT ((1 << STM_USB_EPR_CTR_RX) | \ (STM_USB_EPR_DTOG_RX_WRITE_INVARIANT << STM_USB_EPR_DTOG_RX) | \ (STM_USB_EPR_STAT_RX_WRITE_INVARIANT << STM_USB_EPR_STAT_RX) | \ (1 << STM_USB_EPR_CTR_TX) | \ (STM_USB_EPR_DTOG_TX_WRITE_INVARIANT << STM_USB_EPR_DTOG_TX) | \ (STM_USB_EPR_STAT_TX_WRITE_INVARIANT << STM_USB_EPR_STAT_TX)) #define STM_USB_EPR_INVARIANT_MASK ((1 << STM_USB_EPR_CTR_RX) | \ (STM_USB_EPR_DTOG_RX_MASK << STM_USB_EPR_DTOG_RX) | \ (STM_USB_EPR_STAT_RX_MASK << STM_USB_EPR_STAT_RX) | \ (1 << STM_USB_EPR_CTR_TX) | \ (STM_USB_EPR_DTOG_TX_MASK << STM_USB_EPR_DTOG_TX) | \ (STM_USB_EPR_STAT_TX_MASK << STM_USB_EPR_STAT_TX)) /* * These bits are purely under sw control, so preserve them in the * register by re-writing what was read */ #define STM_USB_EPR_PRESERVE_MASK ((STM_USB_EPR_EP_TYPE_MASK << STM_USB_EPR_EP_TYPE) | \ (1 << STM_USB_EPR_EP_KIND) | \ (STM_USB_EPR_EA_MASK << STM_USB_EPR_EA)) #define TX_DBG 0 #define RX_DBG 0 #if TX_DBG #define _tx_dbg0(msg) _dbg(__LINE__,msg,0) #define _tx_dbg1(msg,value) _dbg(__LINE__,msg,value) #else #define _tx_dbg0(msg) #define _tx_dbg1(msg,value) #endif #if RX_DBG #define _rx_dbg0(msg) _dbg(__LINE__,msg,0) #define _rx_dbg1(msg,value) _dbg(__LINE__,msg,value) #else #define _rx_dbg0(msg) #define _rx_dbg1(msg,value) #endif #if TX_DBG || RX_DBG static void _dbg(int line, char *msg, uint32_t value); #endif /* * Set the state of the specified endpoint register to a new * value. This is tricky because the bits toggle where the new * value is one, and we need to write invariant values in other * spots of the register. This hardware is strange... */ static void _ao_usb_set_stat_tx(int ep, uint32_t stat_tx) { uint16_t epr_write, epr_old; _tx_dbg1("set_stat_tx top", stat_tx); epr_old = epr_write = stm_usb.epr[ep].r; epr_write &= STM_USB_EPR_PRESERVE_MASK; epr_write |= STM_USB_EPR_INVARIANT; epr_write |= set_toggle(epr_old, STM_USB_EPR_STAT_TX_MASK << STM_USB_EPR_STAT_TX, stat_tx << STM_USB_EPR_STAT_TX); stm_usb.epr[ep].r = epr_write; _tx_dbg1("set_stat_tx bottom", epr_write); } static void ao_usb_set_stat_tx(int ep, uint32_t stat_tx) { ao_arch_block_interrupts(); _ao_usb_set_stat_tx(ep, stat_tx); ao_arch_release_interrupts(); } static void _ao_usb_set_stat_rx(int ep, uint32_t stat_rx) { uint16_t epr_write, epr_old; epr_write = epr_old = stm_usb.epr[ep].r; epr_write &= STM_USB_EPR_PRESERVE_MASK; epr_write |= STM_USB_EPR_INVARIANT; epr_write |= set_toggle(epr_old, STM_USB_EPR_STAT_RX_MASK << STM_USB_EPR_STAT_RX, stat_rx << STM_USB_EPR_STAT_RX); stm_usb.epr[ep].r = epr_write; } static void ao_usb_set_stat_rx(int ep, uint32_t stat_rx) { ao_arch_block_interrupts(); _ao_usb_set_stat_rx(ep, stat_rx); ao_arch_release_interrupts(); } /* * Set just endpoint 0, for use during startup */ static void ao_usb_init_ep(uint8_t ep, uint32_t addr, uint32_t type, uint32_t stat_rx, uint32_t stat_tx) { uint16_t epr; ao_arch_block_interrupts(); epr = stm_usb.epr[ep].r; epr = ((0 << STM_USB_EPR_CTR_RX) | (epr & (1 << STM_USB_EPR_DTOG_RX)) | set_toggle(epr, (STM_USB_EPR_STAT_RX_MASK << STM_USB_EPR_STAT_RX), (stat_rx << STM_USB_EPR_STAT_RX)) | (type << STM_USB_EPR_EP_TYPE) | (0 << STM_USB_EPR_EP_KIND) | (0 << STM_USB_EPR_CTR_TX) | (epr & (1 << STM_USB_EPR_DTOG_TX)) | set_toggle(epr, (STM_USB_EPR_STAT_TX_MASK << STM_USB_EPR_STAT_TX), (stat_tx << STM_USB_EPR_STAT_TX)) | (addr << STM_USB_EPR_EA)); stm_usb.epr[ep].r = epr; ao_arch_release_interrupts(); debug ("writing epr[%d] 0x%04x wrote 0x%04x\n", ep, epr, stm_usb.epr[ep].r); } static void ao_usb_alloc_buffers(void) { uint16_t sram_addr = 0; ao_usb_bdt = (void *) stm_usb_sram; sram_addr += 8 * STM_USB_BDT_SIZE; ao_usb_ep0_tx_buffer = ao_usb_packet_buffer_addr(sram_addr); sram_addr += AO_USB_CONTROL_SIZE; ao_usb_ep0_rx_buffer = ao_usb_packet_buffer_addr(sram_addr); sram_addr += AO_USB_CONTROL_SIZE; #if AO_USB_HAS_INT ao_usb_int_tx_offset = sram_addr; sram_addr += AO_USB_INT_SIZE; #endif #if AO_USB_HAS_OUT ao_usb_out_rx_buffer = ao_usb_packet_buffer_addr(sram_addr); ao_usb_out_rx_offset = sram_addr; sram_addr += AO_USB_OUT_SIZE; #endif #if AO_USB_HAS_IN ao_usb_in_tx_buffer = ao_usb_packet_buffer_addr(sram_addr); ao_usb_in_tx_offset = sram_addr; sram_addr += AO_USB_IN_SIZE; #endif #if AO_USB_HAS_IN2 ao_usb_in2_tx_buffer = ao_usb_packet_buffer_addr(sram_addr); ao_usb_in2_tx_offset = sram_addr; sram_addr += AO_USB_IN_SIZE; #endif #if AO_USB_DIRECTIO ao_usb_sram_addr = sram_addr; #endif } static void ao_usb_init_btable(void) { /* Set up EP 0 - a Control end point with 32 bytes of in and out buffers */ ao_usb_bdt[0].single.addr_tx = ao_usb_packet_buffer_offset(ao_usb_ep0_tx_buffer); ao_usb_bdt[0].single.count_tx = 0; ao_usb_bdt[0].single.addr_rx = ao_usb_packet_buffer_offset(ao_usb_ep0_rx_buffer); ao_usb_bdt[0].single.count_rx = ((1 << STM_USB_BDT_COUNT_RX_BL_SIZE) | (((AO_USB_CONTROL_SIZE / 32) - 1) << STM_USB_BDT_COUNT_RX_NUM_BLOCK)); } static void ao_usb_set_ep0(void) { int e; ao_usb_init_btable(); /* buffer table is at the start of USB memory */ stm_usb.btable = 0; ao_usb_init_ep(AO_USB_CONTROL_EPR, AO_USB_CONTROL_EP, STM_USB_EPR_EP_TYPE_CONTROL, STM_USB_EPR_STAT_RX_VALID, STM_USB_EPR_STAT_TX_NAK); /* Clear all of the other endpoints */ for (e = 1; e < 8; e++) { ao_usb_init_ep(e, 0, STM_USB_EPR_EP_TYPE_CONTROL, STM_USB_EPR_STAT_RX_DISABLED, STM_USB_EPR_STAT_TX_DISABLED); } ao_usb_set_address(0); ao_usb_running = 0; /* Reset our internal state */ ao_usb_ep0_state = AO_USB_EP0_IDLE; ao_usb_ep0_in_data = NULL; ao_usb_ep0_in_len = 0; ao_usb_ep0_out_data = 0; ao_usb_ep0_out_len = 0; } static void ao_usb_set_configuration(void) { debug ("ao_usb_set_configuration\n"); #if AO_USB_HAS_INT /* Set up the INT end point */ ao_usb_bdt[AO_USB_INT_EPR].single.addr_tx = ao_usb_int_tx_offset; ao_usb_bdt[AO_USB_INT_EPR].single.count_tx = 0; ao_usb_init_ep(AO_USB_INT_EPR, AO_USB_INT_EP, STM_USB_EPR_EP_TYPE_INTERRUPT, STM_USB_EPR_STAT_RX_DISABLED, STM_USB_EPR_STAT_TX_NAK); #endif #if AO_USB_HAS_OUT /* Set up the OUT end point */ ao_usb_bdt[AO_USB_OUT_EPR].single.addr_rx = ao_usb_out_rx_offset; ao_usb_bdt[AO_USB_OUT_EPR].single.count_rx = ((1 << STM_USB_BDT_COUNT_RX_BL_SIZE) | (((AO_USB_OUT_SIZE / 32) - 1) << STM_USB_BDT_COUNT_RX_NUM_BLOCK)); ao_usb_init_ep(AO_USB_OUT_EPR, AO_USB_OUT_EP, STM_USB_EPR_EP_TYPE_BULK, STM_USB_EPR_STAT_RX_VALID, STM_USB_EPR_STAT_TX_DISABLED); #endif #if AO_USB_HAS_IN /* Set up the IN end point */ ao_usb_bdt[AO_USB_IN_EPR].single.addr_tx = ao_usb_in_tx_offset; ao_usb_bdt[AO_USB_IN_EPR].single.count_tx = 0; ao_usb_init_ep(AO_USB_IN_EPR, AO_USB_IN_EP, STM_USB_EPR_EP_TYPE_BULK, STM_USB_EPR_STAT_RX_DISABLED, STM_USB_EPR_STAT_TX_NAK); #endif #if AO_USB_HAS_IN2 /* Set up the IN2 end point */ ao_usb_bdt[AO_USB_IN2_EPR].single.addr_tx = ao_usb_in2_tx_offset; ao_usb_bdt[AO_USB_IN2_EPR].single.count_tx = 0; ao_usb_init_ep(AO_USB_IN2_EPR, AO_USB_IN2_EP, STM_USB_EPR_EP_TYPE_BULK, STM_USB_EPR_STAT_RX_DISABLED, STM_USB_EPR_STAT_TX_NAK); #endif ao_usb_in_flushed = 0; ao_usb_in_pending = 0; ao_wakeup(&ao_usb_in_pending); #if AO_USB_HAS_IN2 ao_usb_in2_flushed = 0; ao_usb_in2_pending = 0; ao_wakeup(&ao_usb_in2_pending); #endif ao_usb_out_avail = 0; ao_usb_configuration = 0; ao_wakeup(AO_USB_OUT_SLEEP_ADDR); ao_usb_running = 1; #if AO_USB_DIRECTIO ao_wakeup(&ao_usb_running); #endif } static uint16_t control_count; static uint16_t int_count; static uint16_t in_count; static uint16_t out_count; static uint16_t reset_count; /* The USB memory must be accessed in 16-bit units */ static void ao_usb_copy_tx(const uint8_t *src, uint16_t *base, uint16_t bytes) { while (bytes >= 2) { *base++ = src[0] | (src[1] << 8); src += 2; bytes -= 2; } if (bytes) *base = *src; } static void ao_usb_copy_rx(uint8_t *dst, uint16_t *base, uint16_t bytes) { while (bytes >= 2) { uint16_t s = *base++; dst[0] = s; dst[1] = s >> 8; dst += 2; bytes -= 2; } if (bytes) *dst = *base; } /* Send an IN data packet */ static void ao_usb_ep0_flush(void) { uint8_t this_len; /* Check to see if the endpoint is still busy */ if (ao_usb_epr_stat_tx(stm_usb.epr[0].r) == STM_USB_EPR_STAT_TX_VALID) { debug("EP0 not accepting IN data\n"); return; } this_len = ao_usb_ep0_in_len; if (this_len > AO_USB_CONTROL_SIZE) this_len = AO_USB_CONTROL_SIZE; if (this_len < AO_USB_CONTROL_SIZE) ao_usb_ep0_state = AO_USB_EP0_IDLE; ao_usb_ep0_in_len -= this_len; debug_data ("Flush EP0 len %d:", this_len); ao_usb_copy_tx(ao_usb_ep0_in_data, ao_usb_ep0_tx_buffer, this_len); debug_data ("\n"); ao_usb_ep0_in_data += this_len; /* Mark the endpoint as TX valid to send the packet */ ao_usb_bdt[AO_USB_CONTROL_EPR].single.count_tx = this_len; ao_usb_set_stat_tx(AO_USB_CONTROL_EPR, STM_USB_EPR_STAT_TX_VALID); debug ("queue tx. epr 0 now %08x\n", stm_usb.epr[AO_USB_CONTROL_EPR]); } /* Read data from the ep0 OUT fifo */ static void ao_usb_ep0_fill(void) { uint16_t len = ao_usb_bdt[0].single.count_rx & STM_USB_BDT_COUNT_RX_COUNT_RX_MASK; if (len > ao_usb_ep0_out_len) len = ao_usb_ep0_out_len; ao_usb_ep0_out_len -= len; /* Pull all of the data out of the packet */ debug_data ("Fill EP0 len %d:", len); ao_usb_copy_rx(ao_usb_ep0_out_data, ao_usb_ep0_rx_buffer, len); debug_data ("\n"); ao_usb_ep0_out_data += len; /* ACK the packet */ ao_usb_set_stat_rx(0, STM_USB_EPR_STAT_RX_VALID); } static void ao_usb_ep0_in_reset(void) { ao_usb_ep0_in_data = ao_usb_ep0_in_buf; ao_usb_ep0_in_len = 0; } static void ao_usb_ep0_in_queue_byte(uint8_t a) { if (ao_usb_ep0_in_len < sizeof (ao_usb_ep0_in_buf)) ao_usb_ep0_in_buf[ao_usb_ep0_in_len++] = a; } static void ao_usb_ep0_in_set(const uint8_t *data, uint8_t len) { ao_usb_ep0_in_data = data; ao_usb_ep0_in_len = len; } static void ao_usb_ep0_out_set(uint8_t *data, uint8_t len) { ao_usb_ep0_out_data = data; ao_usb_ep0_out_len = len; } static void ao_usb_ep0_in_start(uint16_t max) { /* Don't send more than asked for */ if (ao_usb_ep0_in_len > max) ao_usb_ep0_in_len = max; ao_usb_ep0_flush(); } struct ao_usb_line_coding ao_usb_line_coding = {115200, 0, 0, 8}; #if AO_USB_DEVICE_ID_SERIAL static uint8_t ao_usb_serial[2 + 48]; /* Convert a 32-bit value to 8 hexidecimal UCS2 characters */ static void hex_to_ucs2(uint32_t in, uint8_t *out) { int i; for (i = 28; i >= 0; i -= 4) { uint8_t bits = (in >> i) & 0xf; *out++ = ((bits < 10) ? '0' : ('a' - 10)) + bits; *out++ = 0; } } /* Encode the device ID (96 bits) in hexidecimal to use as a device * serial number */ static void ao_usb_serial_init(void) { ao_usb_serial[0] = 50; /* length */ ao_usb_serial[1] = AO_USB_DESC_STRING; hex_to_ucs2(stm_device_id.u_id0, ao_usb_serial + 2 + 0); hex_to_ucs2(stm_device_id.u_id1, ao_usb_serial + 2 + 16); hex_to_ucs2(stm_device_id.u_id2, ao_usb_serial + 2 + 32); } #endif /* Walk through the list of descriptors and find a match */ static void ao_usb_get_descriptor(uint16_t value, uint16_t length) { const uint8_t *descriptor; uint8_t type = value >> 8; uint8_t index = value; descriptor = ao_usb_descriptors; while (descriptor[0] != 0) { if (descriptor[1] == type && index-- == 0) { uint8_t len; if (type == AO_USB_DESC_CONFIGURATION) len = descriptor[2]; else len = descriptor[0]; #if AO_USB_DEVICE_ID_SERIAL /* Slightly hacky - the serial number is string 3 */ if (type == AO_USB_DESC_STRING && (value & 0xff) == 3) { descriptor = ao_usb_serial; len = sizeof (ao_usb_serial); } #endif if (len > length) len = length; ao_usb_ep0_in_set(descriptor, len); break; } descriptor += descriptor[0]; } } static void ao_usb_ep0_setup(void) { /* Pull the setup packet out of the fifo */ ao_usb_ep0_out_set((uint8_t *) &ao_usb_setup, 8); ao_usb_ep0_fill(); if (ao_usb_ep0_out_len != 0) { debug ("invalid setup packet length\n"); return; } if ((ao_usb_setup.dir_type_recip & AO_USB_DIR_IN) || ao_usb_setup.length == 0) ao_usb_ep0_state = AO_USB_EP0_DATA_IN; else ao_usb_ep0_state = AO_USB_EP0_DATA_OUT; ao_usb_ep0_in_reset(); switch(ao_usb_setup.dir_type_recip & AO_USB_SETUP_TYPE_MASK) { case AO_USB_TYPE_STANDARD: debug ("Standard setup packet\n"); switch(ao_usb_setup.dir_type_recip & AO_USB_SETUP_RECIP_MASK) { case AO_USB_RECIP_DEVICE: debug ("Device setup packet\n"); switch(ao_usb_setup.request) { case AO_USB_REQ_GET_STATUS: debug ("get status\n"); ao_usb_ep0_in_queue_byte(0); ao_usb_ep0_in_queue_byte(0); break; case AO_USB_REQ_SET_ADDRESS: debug ("set address %d\n", ao_usb_setup.value); ao_usb_address = ao_usb_setup.value; ao_usb_address_pending = 1; break; case AO_USB_REQ_GET_DESCRIPTOR: debug ("get descriptor %d\n", ao_usb_setup.value); ao_usb_get_descriptor(ao_usb_setup.value, ao_usb_setup.length); break; case AO_USB_REQ_GET_CONFIGURATION: debug ("get configuration %d\n", ao_usb_configuration); ao_usb_ep0_in_queue_byte(ao_usb_configuration); break; case AO_USB_REQ_SET_CONFIGURATION: ao_usb_configuration = ao_usb_setup.value; debug ("set configuration %d\n", ao_usb_configuration); ao_usb_set_configuration(); break; } break; case AO_USB_RECIP_INTERFACE: debug ("Interface setup packet\n"); switch(ao_usb_setup.request) { case AO_USB_REQ_GET_STATUS: ao_usb_ep0_in_queue_byte(0); ao_usb_ep0_in_queue_byte(0); break; case AO_USB_REQ_GET_INTERFACE: ao_usb_ep0_in_queue_byte(0); break; case AO_USB_REQ_SET_INTERFACE: break; } break; case AO_USB_RECIP_ENDPOINT: debug ("Endpoint setup packet\n"); switch(ao_usb_setup.request) { case AO_USB_REQ_GET_STATUS: ao_usb_ep0_in_queue_byte(0); ao_usb_ep0_in_queue_byte(0); break; } break; } break; case AO_USB_TYPE_CLASS: debug ("Class setup packet\n"); switch (ao_usb_setup.request) { case AO_USB_SET_LINE_CODING: debug ("set line coding\n"); ao_usb_ep0_out_set((uint8_t *) &ao_usb_line_coding, 7); break; case AO_USB_GET_LINE_CODING: debug ("get line coding\n"); ao_usb_ep0_in_set((const uint8_t *) &ao_usb_line_coding, 7); break; case AO_USB_SET_CONTROL_LINE_STATE: break; } break; } /* If we're not waiting to receive data from the host, * queue an IN response */ if (ao_usb_ep0_state == AO_USB_EP0_DATA_IN) ao_usb_ep0_in_start(ao_usb_setup.length); } static void ao_usb_ep0_handle(uint8_t receive) { ao_usb_ep0_receive = 0; if (receive & AO_USB_EP0_GOT_SETUP) { debug ("\tsetup\n"); ao_usb_ep0_setup(); } if (receive & AO_USB_EP0_GOT_RX_DATA) { debug ("\tgot rx data\n"); if (ao_usb_ep0_state == AO_USB_EP0_DATA_OUT) { ao_usb_ep0_fill(); if (ao_usb_ep0_out_len == 0) { ao_usb_ep0_state = AO_USB_EP0_DATA_IN; ao_usb_ep0_in_start(0); } } } if (receive & AO_USB_EP0_GOT_TX_ACK) { debug ("\tgot tx ack\n"); #if HAS_FLIGHT && AO_USB_FORCE_IDLE ao_flight_force_idle = 1; #endif /* Wait until the IN packet is received from addr 0 * before assigning our local address */ if (ao_usb_address_pending) ao_usb_set_address(ao_usb_address); if (ao_usb_ep0_state == AO_USB_EP0_DATA_IN) ao_usb_ep0_flush(); } } #if AO_POWER_MANAGEMENT void ao_usb_suspend(void) { stm_usb.cntr |= (1 << STM_USB_CNTR_FSUSP); ao_power_suspend(); stm_usb.cntr |= (1 << STM_USB_CNTR_LP_MODE); ao_clock_suspend(); } void ao_usb_wakeup(void) { ao_clock_resume(); stm_usb.cntr &= ~(1 << STM_USB_CNTR_FSUSP); ao_power_resume(); } #endif void stm_usb_isr(void) { uint32_t istr = stm_usb.istr; stm_usb.istr = ~istr; if (istr & (1 << STM_USB_ISTR_CTR)) { uint8_t ep = istr & STM_USB_ISTR_EP_ID_MASK; uint16_t epr, epr_write; /* Preserve the SW write bits, don't mess with most HW writable bits, * clear the CTR_RX and CTR_TX bits */ epr = stm_usb.epr[ep].r; epr_write = epr; epr_write &= STM_USB_EPR_PRESERVE_MASK; epr_write |= STM_USB_EPR_INVARIANT; epr_write &= ~(1 << STM_USB_EPR_CTR_RX); epr_write &= ~(1 << STM_USB_EPR_CTR_TX); stm_usb.epr[ep].r = epr_write; switch (ep) { case 0: ++control_count; if (ao_usb_epr_ctr_rx(epr)) { if (ao_usb_epr_setup(epr)) ao_usb_ep0_receive |= AO_USB_EP0_GOT_SETUP; else ao_usb_ep0_receive |= AO_USB_EP0_GOT_RX_DATA; } if (ao_usb_epr_ctr_tx(epr)) ao_usb_ep0_receive |= AO_USB_EP0_GOT_TX_ACK; ao_usb_ep0_handle(ao_usb_ep0_receive); break; case AO_USB_OUT_EPR: ++out_count; if (ao_usb_epr_ctr_rx(epr)) { _rx_dbg1("RX ISR", epr); ao_usb_out_avail = 1; _rx_dbg0("out avail set"); ao_wakeup(AO_USB_OUT_SLEEP_ADDR); _rx_dbg0("stdin awoken"); } break; case AO_USB_IN_EPR: ++in_count; _tx_dbg1("TX ISR", epr); if (ao_usb_epr_ctr_tx(epr)) { ao_usb_in_pending = 0; ao_wakeup(&ao_usb_in_pending); } break; #if AO_USB_HAS_IN2 case AO_USB_IN2_EPR: ++in2_count; _tx_dbg1("TX2 ISR", epr); if (ao_usb_epr_ctr_tx(epr)) { ao_usb_in2_pending = 0; ao_wakeup(&ao_usb_in2_pending); } break; #endif case AO_USB_INT_EPR: ++int_count; if (ao_usb_epr_ctr_tx(epr)) _ao_usb_set_stat_tx(AO_USB_INT_EPR, STM_USB_EPR_STAT_TX_NAK); break; } return; } if (istr & (1 << STM_USB_ISTR_RESET)) { ++reset_count; debug ("\treset\n"); ao_usb_set_ep0(); } #if AO_POWER_MANAGEMENT if (istr & (1 << STM_USB_ISTR_SUSP)) { debug ("\tsuspend\n"); ao_usb_suspend(); } if (istr & (1 << STM_USB_ISTR_WKUP)) { debug ("\twakeup\n"); ao_usb_wakeup(); } #endif } #if AO_USB_HAS_IN /* Queue the current IN buffer for transmission */ static void _ao_usb_in_send(void) { _tx_dbg0("in_send start"); debug ("send %d\n", ao_usb_tx_count); while (ao_usb_in_pending) ao_sleep(&ao_usb_in_pending); ao_usb_in_pending = 1; if (ao_usb_tx_count != AO_USB_IN_SIZE) ao_usb_in_flushed = 1; ao_usb_copy_tx(ao_usb_tx_buffer, ao_usb_in_tx_buffer, ao_usb_tx_count); ao_usb_bdt[AO_USB_IN_EPR].single.addr_tx = ao_usb_in_tx_offset; ao_usb_bdt[AO_USB_IN_EPR].single.count_tx = ao_usb_tx_count; ao_usb_tx_count = 0; _ao_usb_set_stat_tx(AO_USB_IN_EPR, STM_USB_EPR_STAT_TX_VALID); _tx_dbg0("in_send end"); } /* Wait for a free IN buffer. Interrupts are blocked */ static void _ao_usb_in_wait(void) { for (;;) { /* Check if the current buffer is writable */ if (ao_usb_tx_count < AO_USB_IN_SIZE) break; _tx_dbg0("in_wait top"); /* Wait for an IN buffer to be ready */ while (ao_usb_in_pending) ao_sleep(&ao_usb_in_pending); _tx_dbg0("in_wait bottom"); } } void ao_usb_flush(void) { if (!ao_usb_running) return; /* Anytime we've sent a character since * the last time we flushed, we'll need * to send a packet -- the only other time * we would send a packet is when that * packet was full, in which case we now * want to send an empty packet */ ao_arch_block_interrupts(); while (!ao_usb_in_flushed) { _tx_dbg0("flush top"); _ao_usb_in_send(); _tx_dbg0("flush end"); } ao_arch_release_interrupts(); } void ao_usb_putchar(char c) { if (!ao_usb_running) return; ao_arch_block_interrupts(); _ao_usb_in_wait(); ao_usb_in_flushed = 0; ao_usb_tx_buffer[ao_usb_tx_count++] = (uint8_t) c; /* Send the packet when full */ if (ao_usb_tx_count == AO_USB_IN_SIZE) { _tx_dbg0("putchar full"); _ao_usb_in_send(); _tx_dbg0("putchar flushed"); } ao_arch_release_interrupts(); } #endif #if AO_USB_HAS_IN2 /* Queue the current IN buffer for transmission */ static void _ao_usb_in2_send(void) { _tx_dbg0("in2_send start"); debug ("send2 %d\n", ao_usb_tx_count); while (ao_usb_in2_pending) ao_sleep(&ao_usb_in2_pending); ao_usb_in2_pending = 1; if (ao_usb_tx2_count != AO_USB_IN_SIZE) ao_usb_in2_flushed = 1; ao_usb_copy_tx(ao_usb_tx2_buffer, ao_usb_in2_tx_buffer, ao_usb_tx2_count); ao_usb_bdt[AO_USB_IN2_EPR].single.addr_tx = ao_usb_in_tx_offset; ao_usb_bdt[AO_USB_IN2_EPR].single.count_tx = ao_usb_tx_count; ao_usb_tx2_count = 0; _ao_usb_set_stat_tx(AO_USB_IN2_EPR, STM_USB_EPR_STAT_TX_VALID); _tx_dbg0("in2_send end"); } /* Wait for a free IN buffer. Interrupts are blocked */ static void _ao_usb_in2_wait(void) { for (;;) { /* Check if the current buffer is writable */ if (ao_usb_tx2_count < AO_USB_IN_SIZE) break; _tx_dbg0("in2_wait top"); /* Wait for an IN buffer to be ready */ while (ao_usb_in2_pending) ao_sleep(&ao_usb_in2_pending); _tx_dbg0("in_wait bottom"); } } void ao_usb_flush2(void) { if (!ao_usb_running) return; /* Anytime we've sent a character since * the last time we flushed, we'll need * to send a packet -- the only other time * we would send a packet is when that * packet was full, in which case we now * want to send an empty packet */ ao_arch_block_interrupts(); while (!ao_usb_in2_flushed) { _tx_dbg0("flush2 top"); _ao_usb_in2_send(); _tx_dbg0("flush2 end"); } ao_arch_release_interrupts(); } void ao_usb_putchar2(char c) { if (!ao_usb_running) return; ao_arch_block_interrupts(); _ao_usb_in2_wait(); ao_usb_in2_flushed = 0; ao_usb_tx2_buffer[ao_usb_tx2_count++] = (uint8_t) c; /* Send the packet when full */ if (ao_usb_tx2_count == AO_USB_IN_SIZE) { _tx_dbg0("putchar2 full"); _ao_usb_in2_send(); _tx_dbg0("putchar2 flushed"); } ao_arch_release_interrupts(); } #endif #if AO_USB_HAS_OUT static void _ao_usb_out_recv(void) { _rx_dbg0("out_recv top"); ao_usb_out_avail = 0; ao_usb_rx_count = ao_usb_bdt[AO_USB_OUT_EPR].single.count_rx & STM_USB_BDT_COUNT_RX_COUNT_RX_MASK; _rx_dbg1("out_recv count", ao_usb_rx_count); debug ("recv %d\n", ao_usb_rx_count); debug_data("Fill OUT len %d:", ao_usb_rx_count); ao_usb_copy_rx(ao_usb_rx_buffer, ao_usb_out_rx_buffer, ao_usb_rx_count); debug_data("\n"); ao_usb_rx_pos = 0; /* ACK the packet */ _ao_usb_set_stat_rx(AO_USB_OUT_EPR, STM_USB_EPR_STAT_RX_VALID); } int _ao_usb_pollchar(void) { uint8_t c; if (!ao_usb_running) return AO_READ_AGAIN; for (;;) { if (ao_usb_rx_pos != ao_usb_rx_count) break; _rx_dbg0("poll check"); /* Check to see if a packet has arrived */ if (!ao_usb_out_avail) { _rx_dbg0("poll none"); return AO_READ_AGAIN; } _ao_usb_out_recv(); } /* Pull a character out of the fifo */ c = ao_usb_rx_buffer[ao_usb_rx_pos++]; return c; } char ao_usb_getchar(void) { int c; ao_arch_block_interrupts(); while ((c = _ao_usb_pollchar()) == AO_READ_AGAIN) ao_sleep(AO_USB_OUT_SLEEP_ADDR); ao_arch_release_interrupts(); return c; } #endif #if AO_USB_DIRECTIO uint16_t * ao_usb_alloc(void) { uint16_t *buffer; buffer = ao_usb_packet_buffer_addr(ao_usb_sram_addr); ao_usb_sram_addr += AO_USB_IN_SIZE; return buffer; } void ao_usb_write(uint16_t *buffer, uint16_t len) { ao_arch_block_interrupts(); /* Wait for everything to be ready at the same time */ for (;;) { /* Make sure USB is connected */ if (!ao_usb_running) { ao_sleep(&ao_usb_running); continue; } /* Flush any pending regular I/O */ if (ao_usb_tx_count) { _ao_usb_in_send(); continue; } /* Wait for an idle IN buffer */ if (ao_usb_in_pending) { ao_sleep(&ao_usb_in_pending); continue; } break; } ao_usb_in_pending = 1; ao_usb_in_flushed = (len != AO_USB_IN_SIZE); ao_usb_bdt[AO_USB_IN_EPR].single.addr_tx = ao_usb_packet_buffer_offset(buffer); ao_usb_bdt[AO_USB_IN_EPR].single.count_tx = len; _ao_usb_set_stat_tx(AO_USB_IN_EPR, STM_USB_EPR_STAT_TX_VALID); ao_arch_release_interrupts(); } #if AO_USB_HAS_IN2 void ao_usb_write2(uint16_t *buffer, uint16_t len) { ao_arch_block_interrupts(); /* Wait for everything to be ready at the same time */ for (;;) { /* Make sure USB is connected */ if (!ao_usb_running) { ao_sleep(&ao_usb_running); continue; } /* Flush any pending regular I/O */ if (ao_usb_tx2_count) { _ao_usb_in2_send(); continue; } /* Wait for an idle IN buffer */ if (ao_usb_in2_pending) { ao_sleep(&ao_usb_in2_pending); continue; } break; } ao_usb_in2_pending = 1; ao_usb_in2_flushed = (len != AO_USB_IN_SIZE); ao_usb_bdt[AO_USB_IN2_EPR].single.addr_tx = ao_usb_packet_buffer_offset(buffer); ao_usb_bdt[AO_USB_IN2_EPR].single.count_tx = len; _ao_usb_set_stat_tx(AO_USB_IN2_EPR, STM_USB_EPR_STAT_TX_VALID); ao_arch_release_interrupts(); } #endif #endif void ao_usb_disable(void) { ao_arch_block_interrupts(); stm_usb.cntr = (1 << STM_USB_CNTR_FRES); stm_usb.istr = 0; /* Disable USB pull-up */ stm_usb.bcdr &= ~(1 << STM_USB_BCDR_DPPU); /* Switch off the device */ stm_usb.cntr = (1 << STM_USB_CNTR_PDWN) | (1 << STM_USB_CNTR_FRES); /* Disable the interface */ stm_rcc.apb1enr &= ~(1 << STM_RCC_APB1ENR_USBEN); ao_arch_release_interrupts(); } void ao_usb_enable(void) { int t; /* Select HSI48 as USB clock source */ stm_rcc.cfgr3 &= ~(1 << STM_RCC_CFGR3_USBSW); /* Enable USB device */ stm_rcc.apb1enr |= (1 << STM_RCC_APB1ENR_USBEN); /* Clear reset condition */ stm_rcc.apb1rstr &= ~(1 << STM_RCC_APB1RSTR_USBRST); /* Disable USB pull-up */ stm_usb.bcdr &= ~(1 << STM_USB_BCDR_DPPU); /* Do not touch the GPIOA configuration; USB takes priority * over GPIO on pins A11 and A12, but if you select alternate * input 10 (the documented correct selection), then USB is * pulled low and doesn't work at all */ ao_arch_block_interrupts(); /* Route interrupts */ stm_nvic_set_enable(STM_ISR_USB_POS); stm_nvic_set_priority(STM_ISR_USB_POS, 3); ao_usb_configuration = 0; /* Set up buffer descriptors */ ao_usb_init_btable(); /* Reset the USB controller */ stm_usb.cntr = (1 << STM_USB_CNTR_FRES); /* Clear the reset bit */ stm_usb.cntr = 0; /* Clear any spurious interrupts */ stm_usb.istr = 0; ao_usb_set_ep0(); debug ("ao_usb_enable\n"); /* Enable interrupts */ stm_usb.cntr = ((1 << STM_USB_CNTR_CTRM) | (0 << STM_USB_CNTR_PMAOVRM) | (0 << STM_USB_CNTR_ERRM) | (AO_POWER_MANAGEMENT << STM_USB_CNTR_WKUPM) | (AO_POWER_MANAGEMENT << STM_USB_CNTR_SUSPM) | (1 << STM_USB_CNTR_RESETM) | (0 << STM_USB_CNTR_SOFM) | (0 << STM_USB_CNTR_ESOFM) | (0 << STM_USB_CNTR_RESUME) | (0 << STM_USB_CNTR_FSUSP) | (0 << STM_USB_CNTR_LP_MODE) | (0 << STM_USB_CNTR_PDWN) | (0 << STM_USB_CNTR_FRES)); ao_arch_release_interrupts(); for (t = 0; t < 1000; t++) ao_arch_nop(); /* Enable USB pull-up */ stm_usb.bcdr |= (1 << STM_USB_BCDR_DPPU); } #if USB_ECHO struct ao_task ao_usb_echo_task; static void ao_usb_echo(void) { char c; for (;;) { c = ao_usb_getchar(); ao_usb_putchar(c); ao_usb_flush(); } } #endif #if USB_STATUS static void ao_usb_irq(void) { printf ("control: %d out: %d in: %d int: %d reset: %d\n", control_count, out_count, in_count, int_count, reset_count); } __code struct ao_cmds ao_usb_cmds[] = { { ao_usb_irq, "I\0Show USB interrupt counts" }, { 0, NULL } }; #endif void ao_usb_init(void) { /* Turn on syscfg */ stm_rcc.apb2enr |= (1 << STM_RCC_APB2ENR_SYSCFGCOMPEN); /* Set PA11/PA12 remapping bit */ stm_syscfg.cfgr1 |= (AO_PA11_PA12_RMP << STM_SYSCFG_CFGR1_PA11_PA12_RMP); #ifndef AO_USB_START_DISABLED ao_usb_enable(); #endif #if AO_USB_DEVICE_ID_SERIAL ao_usb_serial_init(); #endif debug ("ao_usb_init\n"); ao_usb_ep0_state = AO_USB_EP0_IDLE; ao_usb_alloc_buffers(); #if USB_ECHO ao_add_task(&ao_usb_echo_task, ao_usb_echo, "usb echo"); #endif #if USB_STATUS ao_cmd_register(&ao_usb_cmds[0]); #endif #if !USB_ECHO #if USE_USB_STDIO ao_add_stdio(_ao_usb_pollchar, ao_usb_putchar, ao_usb_flush); #endif #endif } #if TX_DBG || RX_DBG struct ao_usb_dbg { int line; char *msg; uint32_t value; uint32_t primask; #if TX_DBG uint16_t in_count; uint32_t in_epr; uint32_t in_pending; uint32_t tx_count; uint32_t in_flushed; #endif #if RX_DBG uint8_t rx_count; uint8_t rx_pos; uint8_t out_avail; uint32_t out_epr; #endif }; #define NUM_USB_DBG 128 static struct ao_usb_dbg dbg[128]; static int dbg_i; static void _dbg(int line, char *msg, uint32_t value) { uint32_t primask; dbg[dbg_i].line = line; dbg[dbg_i].msg = msg; dbg[dbg_i].value = value; asm("mrs %0,primask" : "=&r" (primask)); dbg[dbg_i].primask = primask; #if TX_DBG dbg[dbg_i].in_count = in_count; dbg[dbg_i].in_epr = stm_usb.epr[AO_USB_IN_EPR]; dbg[dbg_i].in_pending = ao_usb_in_pending; dbg[dbg_i].tx_count = ao_usb_tx_count; dbg[dbg_i].in_flushed = ao_usb_in_flushed; #endif #if RX_DBG dbg[dbg_i].rx_count = ao_usb_rx_count; dbg[dbg_i].rx_pos = ao_usb_rx_pos; dbg[dbg_i].out_avail = ao_usb_out_avail; dbg[dbg_i].out_epr = stm_usb.epr[AO_USB_OUT_EPR]; #endif if (++dbg_i == NUM_USB_DBG) dbg_i = 0; } #endif