/* * Copyright © 2012 Keith Packard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include "ao.h" #include #if HAS_FAKE_FLIGHT #include #endif #ifndef HAS_TICK #define HAS_TICK 1 #endif #if HAS_TICK volatile AO_TICK_TYPE ao_tick_count; AO_TICK_TYPE ao_time(void) { return ao_tick_count; } #if AO_DATA_ALL volatile __data uint8_t ao_data_interval = 1; volatile __data uint8_t ao_data_count; #endif void stm_systick_isr(void) { if (stm_systick.csr & (1 << STM_SYSTICK_CSR_COUNTFLAG)) { ++ao_tick_count; #if HAS_TASK_QUEUE if (ao_task_alarm_tick && (int16_t) (ao_tick_count - ao_task_alarm_tick) >= 0) ao_task_check_alarm((uint16_t) ao_tick_count); #endif #if AO_DATA_ALL if (++ao_data_count == ao_data_interval) { ao_data_count = 0; #if HAS_ADC #if HAS_FAKE_FLIGHT if (ao_fake_flight_active) ao_fake_flight_poll(); else #endif ao_adc_poll(); #endif #if (AO_DATA_ALL & ~(AO_DATA_ADC)) ao_wakeup((void *) &ao_data_count); #endif } #endif #ifdef AO_TIMER_HOOK AO_TIMER_HOOK; #endif } } #if HAS_ADC void ao_timer_set_adc_interval(uint8_t interval) { ao_arch_critical( ao_data_interval = interval; ao_data_count = 0; ); } #endif #define SYSTICK_RELOAD (AO_SYSTICK / 100 - 1) void ao_timer_init(void) { stm_systick.csr = 0; stm_systick.rvr = SYSTICK_RELOAD; stm_systick.cvr = 0; stm_systick.csr = ((1 << STM_SYSTICK_CSR_ENABLE) | (1 << STM_SYSTICK_CSR_TICKINT) | (STM_SYSTICK_CSR_CLKSOURCE_HCLK_8 << STM_SYSTICK_CSR_CLKSOURCE)); } #endif #if AO_HSI48 static void ao_clock_enable_crs(void) { /* Enable crs interface clock */ stm_rcc.apb1enr |= (1 << STM_RCC_APB1ENR_CRSEN); /* Disable error counter */ stm_crs.cr = ((stm_crs.cr & (1 << 4)) | (32 << STM_CRS_CR_TRIM) | (0 << STM_CRS_CR_SWSYNC) | (0 << STM_CRS_CR_AUTOTRIMEN) | (0 << STM_CRS_CR_CEN) | (0 << STM_CRS_CR_ESYNCIE) | (0 << STM_CRS_CR_ERRIE) | (0 << STM_CRS_CR_SYNCWARNIE) | (0 << STM_CRS_CR_SYNCOKIE)); /* Configure for USB source */ stm_crs.cfgr = ((stm_crs.cfgr & ((1 << 30) | (1 << 27))) | (0 << STM_CRS_CFGR_SYNCPOL) | (STM_CRS_CFGR_SYNCSRC_USB << STM_CRS_CFGR_SYNCSRC) | (STM_CRS_CFGR_SYNCDIV_1 << STM_CRS_CFGR_SYNCDIV) | (0x22 << STM_CRS_CFGR_FELIM) | (((48000000 / 1000) - 1) << STM_CRS_CFGR_RELOAD)); /* Enable error counter, set auto trim */ stm_crs.cr = ((stm_crs.cr & (1 << 4)) | (32 << STM_CRS_CR_TRIM) | (0 << STM_CRS_CR_SWSYNC) | (1 << STM_CRS_CR_AUTOTRIMEN) | (1 << STM_CRS_CR_CEN) | (0 << STM_CRS_CR_ESYNCIE) | (0 << STM_CRS_CR_ERRIE) | (0 << STM_CRS_CR_SYNCWARNIE) | (0 << STM_CRS_CR_SYNCOKIE)); } #endif static void ao_clock_hsi(void) { stm_rcc.cr |= (1 << STM_RCC_CR_HSION); while (!(stm_rcc.cr & (1 << STM_RCC_CR_HSIRDY))) ao_arch_nop(); stm_rcc.cfgr = (stm_rcc.cfgr & ~(STM_RCC_CFGR_SW_MASK << STM_RCC_CFGR_SW)) | (STM_RCC_CFGR_SW_HSI << STM_RCC_CFGR_SW); /* wait for system to switch to HSI */ while ((stm_rcc.cfgr & (STM_RCC_CFGR_SWS_MASK << STM_RCC_CFGR_SWS)) != (STM_RCC_CFGR_SWS_HSI << STM_RCC_CFGR_SWS)) ao_arch_nop(); /* reset the clock config, leaving us running on the HSI */ stm_rcc.cfgr &= (uint32_t)0x0000000f; /* reset PLLON, CSSON, HSEBYP, HSEON */ stm_rcc.cr &= 0x0000ffff; } static void ao_clock_normal_start(void) { #if AO_HSE uint32_t cfgr; #define STM_RCC_CFGR_SWS_TARGET_CLOCK STM_RCC_CFGR_SWS_PLL #define STM_RCC_CFGR_SW_TARGET_CLOCK STM_RCC_CFGR_SW_PLL #define STM_PLLSRC AO_HSE #define STM_RCC_CFGR_PLLSRC_TARGET_CLOCK STM_RCC_CFGR_PLLSRC_HSE #if AO_HSE_BYPASS stm_rcc.cr |= (1 << STM_RCC_CR_HSEBYP); #else stm_rcc.cr &= ~(1 << STM_RCC_CR_HSEBYP); #endif /* Enable HSE clock */ stm_rcc.cr |= (1 << STM_RCC_CR_HSEON); while (!(stm_rcc.cr & (1 << STM_RCC_CR_HSERDY))) asm("nop"); /* Disable the PLL */ stm_rcc.cr &= ~(1 << STM_RCC_CR_PLLON); while (stm_rcc.cr & (1 << STM_RCC_CR_PLLRDY)) asm("nop"); /* Set multiplier */ cfgr = stm_rcc.cfgr; cfgr &= ~(STM_RCC_CFGR_PLLMUL_MASK << STM_RCC_CFGR_PLLMUL); cfgr |= (AO_RCC_CFGR_PLLMUL << STM_RCC_CFGR_PLLMUL); /* PLL source */ cfgr &= ~(1 << STM_RCC_CFGR_PLLSRC); cfgr |= (STM_RCC_CFGR_PLLSRC_TARGET_CLOCK << STM_RCC_CFGR_PLLSRC); stm_rcc.cfgr = cfgr; /* Set pre divider */ stm_rcc.cfgr2 = (AO_RCC_CFGR2_PLLDIV << STM_RCC_CFGR2_PREDIV); /* Enable the PLL and wait for it */ stm_rcc.cr |= (1 << STM_RCC_CR_PLLON); while (!(stm_rcc.cr & (1 << STM_RCC_CR_PLLRDY))) asm("nop"); #endif #if AO_HSI48 #define STM_RCC_CFGR_SWS_TARGET_CLOCK STM_RCC_CFGR_SWS_HSI48 #define STM_RCC_CFGR_SW_TARGET_CLOCK STM_RCC_CFGR_SW_HSI48 /* Turn HSI48 clock on */ stm_rcc.cr2 |= (1 << STM_RCC_CR2_HSI48ON); /* Wait for clock to stabilize */ while ((stm_rcc.cr2 & (1 << STM_RCC_CR2_HSI48RDY)) == 0) ao_arch_nop(); ao_clock_enable_crs(); #endif #ifndef STM_RCC_CFGR_SWS_TARGET_CLOCK #define STM_HSI 16000000 #define STM_RCC_CFGR_SWS_TARGET_CLOCK STM_RCC_CFGR_SWS_HSI #define STM_RCC_CFGR_SW_TARGET_CLOCK STM_RCC_CFGR_SW_HSI #define STM_PLLSRC STM_HSI #define STM_RCC_CFGR_PLLSRC_TARGET_CLOCK 0 #endif } static void ao_clock_normal_switch(void) { uint32_t cfgr; cfgr = stm_rcc.cfgr; cfgr &= ~(STM_RCC_CFGR_SW_MASK << STM_RCC_CFGR_SW); cfgr |= (STM_RCC_CFGR_SW_TARGET_CLOCK << STM_RCC_CFGR_SW); stm_rcc.cfgr = cfgr; for (;;) { uint32_t c, part, mask, val; c = stm_rcc.cfgr; mask = (STM_RCC_CFGR_SWS_MASK << STM_RCC_CFGR_SWS); val = (STM_RCC_CFGR_SWS_TARGET_CLOCK << STM_RCC_CFGR_SWS); part = c & mask; if (part == val) break; } #if !AO_HSI && !AO_NEED_HSI /* Turn off the HSI clock */ stm_rcc.cr &= ~(1 << STM_RCC_CR_HSION); #endif #ifdef STM_PLLSRC /* USB PLL source */ stm_rcc.cfgr3 |= (1 << STM_RCC_CFGR3_USBSW); #endif } void ao_clock_init(void) { uint32_t cfgr; /* Switch to HSI while messing about */ ao_clock_hsi(); /* Disable all interrupts */ stm_rcc.cir = 0; /* Start high speed clock */ ao_clock_normal_start(); /* Set flash latency to tolerate 48MHz SYSCLK -> 1 wait state */ /* Enable prefetch */ stm_flash.acr |= (1 << STM_FLASH_ACR_PRFTBE); /* Enable 1 wait state so the CPU can run at 48MHz */ stm_flash.acr |= (STM_FLASH_ACR_LATENCY_1 << STM_FLASH_ACR_LATENCY); /* Enable power interface clock */ stm_rcc.apb1enr |= (1 << STM_RCC_APB1ENR_PWREN); /* HCLK to 48MHz -> AHB prescaler = /1 */ cfgr = stm_rcc.cfgr; cfgr &= ~(STM_RCC_CFGR_HPRE_MASK << STM_RCC_CFGR_HPRE); cfgr |= (AO_RCC_CFGR_HPRE_DIV << STM_RCC_CFGR_HPRE); stm_rcc.cfgr = cfgr; while ((stm_rcc.cfgr & (STM_RCC_CFGR_HPRE_MASK << STM_RCC_CFGR_HPRE)) != (AO_RCC_CFGR_HPRE_DIV << STM_RCC_CFGR_HPRE)) ao_arch_nop(); /* APB Prescaler = AO_APB_PRESCALER */ cfgr = stm_rcc.cfgr; cfgr &= ~(STM_RCC_CFGR_PPRE_MASK << STM_RCC_CFGR_PPRE); cfgr |= (AO_RCC_CFGR_PPRE_DIV << STM_RCC_CFGR_PPRE); stm_rcc.cfgr = cfgr; /* Switch to the desired system clock */ ao_clock_normal_switch(); /* Clear reset flags */ stm_rcc.csr |= (1 << STM_RCC_CSR_RMVF); #ifdef AO_MCO_PORT cfgr = stm_rcc.cfgr; /* Send PLL clock to MCO */ cfgr &= ~(STM_RCC_CFGR_MCO_MASK << STM_RCC_CFGR_MCO); cfgr |= (STM_RCC_CFGR_MCO_PLLCLK << STM_RCC_CFGR_MCO); /* Divide by 1 */ cfgr &= ~(STM_RCC_CFGR_MCOPRE_DIV_MASK << STM_RCC_CFGR_MCOPRE); cfgr |= (STM_RCC_CFGR_MCOPRE_DIV_1 << STM_RCC_CFGR_MCOPRE); /* Don't divide PLL */ cfgr |= (1 << STM_RCC_CFGR_PLL_NODIV); stm_rcc.cfgr = cfgr; ao_enable_port(AO_MCO_PORT); stm_ospeedr_set(AO_MCO_PORT, AO_MCO_PIN, STM_OSPEEDR_HIGH); stm_afr_set(AO_MCO_PORT, AO_MCO_PIN, AO_MCO_AF); #endif #if DEBUG_THE_CLOCK /* Output SYSCLK on PA8 for measurments */ stm_rcc.ahbenr |= (1 << STM_RCC_AHBENR_GPIOAEN); stm_afr_set(&stm_gpioa, 8, STM_AFR_AF0); stm_ospeedr_set(&stm_gpioa, 8, STM_OSPEEDR_HIGH); stm_rcc.cfgr |= (STM_RCC_CFGR_MCOPRE_DIV_1 << STM_RCC_CFGR_MCOPRE); stm_rcc.cfgr |= (STM_RCC_CFGR_MCOSEL_HSE << STM_RCC_CFGR_MCOSEL); #endif } #if AO_POWER_MANAGEMENT void ao_clock_suspend(void) { ao_clock_hsi(); } void ao_clock_resume(void) { ao_clock_normal_start(); ao_clock_normal_switch(); } #endif