/* * Copyright © 2012 Keith Packard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include "ao.h" static volatile __data uint16_t ao_tick_count; uint16_t ao_time(void) { uint16_t v; ao_arch_critical( v = ao_tick_count; ); return v; } static __xdata uint8_t ao_forever; void ao_delay(uint16_t ticks) { ao_alarm(ticks); ao_sleep(&ao_forever); } #if HAS_ADC volatile __data uint8_t ao_adc_interval = 1; volatile __data uint8_t ao_adc_count; #endif void ao_debug_out(char c); void stm_tim6_isr(void) { ++ao_tick_count; #if HAS_ADC if (++ao_adc_count == ao_adc_interval) { ao_adc_count = 0; ao_adc_poll(); } #endif } #if HAS_ADC void ao_timer_set_adc_interval(uint8_t interval) __critical { ao_adc_interval = interval; ao_adc_count = 0; } #endif #define TIMER_10kHz (STM_APB1 / 10000) void ao_timer_init(void) { stm_nvic_set_enable(STM_ISR_TIM6_POS); stm_nvic_set_priority(STM_ISR_TIM6_POS, 1); /* Turn on timer 6 */ stm_rcc.apb1enr |= (1 << STM_RCC_APB1ENR_TIM6EN); stm_tim6.psc = TIMER_10kHz; stm_tim6.arr = 100; stm_tim6.cnt = 0; /* Enable update interrupt */ stm_tim6.dier = (1 << STM_TIM67_DIER_UIE); /* Poke timer to reload values */ stm_tim6.egr |= (1 << STM_TIM67_EGR_UG); stm_tim6.cr2 = (STM_TIM67_CR2_MMS_RESET << STM_TIM67_CR2_MMS); /* And turn it on */ stm_tim6.cr1 = ((0 << STM_TIM67_CR1_ARPE) | (0 << STM_TIM67_CR1_OPM) | (1 << STM_TIM67_CR1_URS) | (0 << STM_TIM67_CR1_UDIS) | (1 << STM_TIM67_CR1_CEN)); } void ao_clock_init(void) { uint32_t cfgr; uint32_t cr; /* Set flash latency to tolerate 32MHz SYSCLK -> 1 wait state */ uint32_t acr = stm_flash.acr; /* Enable 64-bit access and prefetch */ acr |= (1 << STM_FLASH_ACR_ACC64) | (1 << STM_FLASH_ACR_PRFEN); stm_flash.acr = acr; /* Enable 1 wait state so the CPU can run at 32MHz */ /* (haven't managed to run the CPU at 32MHz yet, it's at 16MHz) */ acr |= (1 << STM_FLASH_ACR_LATENCY); stm_flash.acr = acr; /* HCLK to 16MHz -> AHB prescaler = /1 */ cfgr = stm_rcc.cfgr; cfgr &= ~(STM_RCC_CFGR_HPRE_MASK << STM_RCC_CFGR_HPRE); cfgr |= (STM_RCC_CFGR_HPRE_DIV_1 << STM_RCC_CFGR_HPRE); stm_rcc.cfgr = cfgr; while ((stm_rcc.cfgr & (STM_RCC_CFGR_HPRE_MASK << STM_RCC_CFGR_HPRE)) != (STM_RCC_CFGR_HPRE_DIV_1 << STM_RCC_CFGR_HPRE)) asm ("nop"); #define STM_AHB_PRESCALER 1 /* PCLK1 to 16MHz -> APB1 Prescaler = 1 */ cfgr = stm_rcc.cfgr; cfgr &= ~(STM_RCC_CFGR_PPRE1_MASK << STM_RCC_CFGR_PPRE1); cfgr |= (STM_RCC_CFGR_PPRE1_DIV_1 << STM_RCC_CFGR_PPRE1); stm_rcc.cfgr = cfgr; #define STM_APB1_PRESCALER 1 /* PCLK2 to 16MHz -> APB2 Prescaler = 1 */ cfgr = stm_rcc.cfgr; cfgr &= ~(STM_RCC_CFGR_PPRE2_MASK << STM_RCC_CFGR_PPRE2); cfgr |= (STM_RCC_CFGR_PPRE2_DIV_1 << STM_RCC_CFGR_PPRE2); stm_rcc.cfgr = cfgr; #define STM_APB2_PRESCALER 1 /* Enable power interface clock */ stm_rcc.apb1enr |= (1 << STM_RCC_APB1ENR_PWREN); /* Set voltage range to 1.8V */ /* poll VOSF bit in PWR_CSR. Wait until it is reset to 0 */ while ((stm_pwr.csr & (1 << STM_PWR_CSR_VOSF)) != 0) asm("nop"); /* Configure voltage scaling range */ cr = stm_pwr.cr; cr &= ~(STM_PWR_CR_VOS_MASK << STM_PWR_CR_VOS); cr |= (STM_PWR_CR_VOS_1_8 << STM_PWR_CR_VOS); stm_pwr.cr = cr; /* poll VOSF bit in PWR_CSR. Wait until it is reset to 0 */ while ((stm_pwr.csr & (1 << STM_PWR_CSR_VOSF)) != 0) asm("nop"); /* Enable HSI RC clock 16MHz */ if (!(stm_rcc.cr & (1 << STM_RCC_CR_HSIRDY))) { stm_rcc.cr |= (1 << STM_RCC_CR_HSION); while (!(stm_rcc.cr & (1 << STM_RCC_CR_HSIRDY))) asm("nop"); } #define STM_HSI 16000000 /* Switch to direct HSI for SYSCLK */ if ((stm_rcc.cfgr & (STM_RCC_CFGR_SWS_MASK << STM_RCC_CFGR_SWS)) != (STM_RCC_CFGR_SWS_HSI << STM_RCC_CFGR_SWS)) { cfgr = stm_rcc.cfgr; cfgr &= ~(STM_RCC_CFGR_SW_MASK << STM_RCC_CFGR_SW); cfgr |= (STM_RCC_CFGR_SW_HSI << STM_RCC_CFGR_SW); stm_rcc.cfgr = cfgr; while ((stm_rcc.cfgr & (STM_RCC_CFGR_SWS_MASK << STM_RCC_CFGR_SWS)) != (STM_RCC_CFGR_SWS_HSI << STM_RCC_CFGR_SWS)) asm("nop"); } /* Disable the PLL */ stm_rcc.cr &= ~(1 << STM_RCC_CR_PLLON); while (stm_rcc.cr & (1 << STM_RCC_CR_PLLRDY)) asm("nop"); /* PLLVCO to 96MHz (for USB) -> PLLMUL = 6, PLLDIV = 4 */ cfgr = stm_rcc.cfgr; cfgr &= ~(STM_RCC_CFGR_PLLMUL_MASK << STM_RCC_CFGR_PLLMUL); cfgr &= ~(STM_RCC_CFGR_PLLDIV_MASK << STM_RCC_CFGR_PLLDIV); // cfgr |= (STM_RCC_CFGR_PLLMUL_6 << STM_RCC_CFGR_PLLMUL); // cfgr |= (STM_RCC_CFGR_PLLDIV_3 << STM_RCC_CFGR_PLLDIV); cfgr |= (STM_RCC_CFGR_PLLMUL_6 << STM_RCC_CFGR_PLLMUL); cfgr |= (STM_RCC_CFGR_PLLDIV_4 << STM_RCC_CFGR_PLLDIV); #define STM_PLLMUL 6 #define STM_PLLDIV 4 /* PLL source to HSI */ cfgr &= ~(1 << STM_RCC_CFGR_PLLSRC); #define STM_PLLSRC STM_HSI stm_rcc.cfgr = cfgr; /* Enable the PLL and wait for it */ stm_rcc.cr |= (1 << STM_RCC_CR_PLLON); while (!(stm_rcc.cr & (1 << STM_RCC_CR_PLLRDY))) asm("nop"); /* Switch to the PLL for the system clock */ cfgr = stm_rcc.cfgr; cfgr &= ~(STM_RCC_CFGR_SW_MASK << STM_RCC_CFGR_SW); cfgr |= (STM_RCC_CFGR_SW_PLL << STM_RCC_CFGR_SW); stm_rcc.cfgr = cfgr; for (;;) { uint32_t c, part, mask, val; c = stm_rcc.cfgr; mask = (STM_RCC_CFGR_SWS_MASK << STM_RCC_CFGR_SWS); val = (STM_RCC_CFGR_SWS_PLL << STM_RCC_CFGR_SWS); part = c & mask; if (part == val) break; } }