/* * Copyright © 2013 Keith Packard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #ifndef _AO_QUATERNION_H_ #define _AO_QUATERNION_H_ #include struct ao_quaternion { float r; /* real bit */ float x, y, z; /* imaginary bits */ }; static inline void ao_quaternion_multiply(struct ao_quaternion *r, const struct ao_quaternion *a, const struct ao_quaternion *b) { struct ao_quaternion t; #define T(_a,_b) (((a)->_a) * ((b)->_b)) /* * Quaternions * * ii = jj = kk = ijk = -1; * * kji = 1; * * ij = k; ji = -k; * kj = -i; jk = i; * ik = -j; ki = j; * * Multiplication p * q: * * (pr + ipx + jpy + kpz) (qr + iqx + jqy + kqz) = * * ( pr * qr + pr * iqx + pr * jqy + pr * kqz) + * (ipx * qr + ipx * iqx + ipx * jqy + ipx * kqz) + * (jpy * qr + jpy * iqx + jpy * jqy + jpy * kqz) + * (kpz * qr + kpz * iqx + kpz * jqy + kpz * kqz) = * * * (pr * qr) + i(pr * qx) + j(pr * qy) + k(pr * qz) + * i(px * qr) - (px * qx) + k(px * qy) - j(px * qz) + * j(py * qr) - k(py * qx) - (py * qy) + i(py * qz) + * k(pz * qr) + j(pz * qx) - i(pz * qy) - (pz * qz) = * * 1 * ( (pr * qr) - (px * qx) - (py * qy) - (pz * qz) ) + * i * ( (pr * qx) + (px * qr) + (py * qz) - (pz * qy) ) + * j * ( (pr * qy) - (px * qz) + (py * qr) + (pz * qx) ) + * k * ( (pr * qz) + (px * qy) - (py * qx) + (pz * qr); */ t.r = T(r,r) - T(x,x) - T(y,y) - T(z,z); t.x = T(r,x) + T(x,r) + T(y,z) - T(z,y); t.y = T(r,y) - T(x,z) + T(y,r) + T(z,x); t.z = T(r,z) + T(x,y) - T(y,x) + T(z,r); #undef T *r = t; } static inline void ao_quaternion_conjugate(struct ao_quaternion *r, const struct ao_quaternion *a) { r->r = a->r; r->x = -a->x; r->y = -a->y; r->z = -a->z; } static inline float ao_quaternion_normal(const struct ao_quaternion *a) { #define S(_a) (((a)->_a) * ((a)->_a)) return S(r) + S(x) + S(y) + S(z); #undef S } static inline void ao_quaternion_scale(struct ao_quaternion *r, const struct ao_quaternion *a, float b) { r->r = a->r * b; r->x = a->x * b; r->y = a->y * b; r->z = a->z * b; } static inline void ao_quaternion_normalize(struct ao_quaternion *r, const struct ao_quaternion *a) { float n = ao_quaternion_normal(a); if (n > 0) ao_quaternion_scale(r, a, 1/sqrtf(n)); else *r = *a; } static inline float ao_quaternion_dot(const struct ao_quaternion *a, const struct ao_quaternion *b) { #define T(_a) (((a)->_a) * ((b)->_a)) return T(r) + T(x) + T(y) + T(z); #undef T } static inline void ao_quaternion_rotate(struct ao_quaternion *r, const struct ao_quaternion *a, const struct ao_quaternion *b) { struct ao_quaternion c; struct ao_quaternion t; ao_quaternion_multiply(&t, b, a); ao_quaternion_conjugate(&c, b); ao_quaternion_multiply(r, &t, &c); } /* * Compute a rotation quaternion between two vectors * * cos(θ) + u * sin(θ) * * where θ is the angle between the two vectors and u * is a unit vector axis of rotation */ static inline void ao_quaternion_vectors_to_rotation(struct ao_quaternion *r, const struct ao_quaternion *a, const struct ao_quaternion *b) { /* * The cross product will point orthogonally to the two * vectors, forming our rotation axis. The length will be * sin(θ), so these values are already multiplied by that. */ float x = a->y * b->z - a->z * b->y; float y = a->z * b->x - a->x * b->z; float z = a->x * b->y - a->y * b->x; float s_2 = x*x + y*y + z*z; float s = sqrtf(s_2); /* cos(θ) = a · b / (|a| |b|). * * a and b are both unit vectors, so the divisor is one */ float c = a->x*b->x + a->y*b->y + a->z*b->z; float c_half = sqrtf ((1 + c) / 2); float s_half = sqrtf ((1 - c) / 2); /* * Divide out the sine factor from the * cross product, then multiply in the * half sine factor needed for the quaternion */ float s_scale = s_half / s; r->x = x * s_scale; r->y = y * s_scale; r->z = z * s_scale; r->r = c_half; ao_quaternion_normalize(r, r); } static inline void ao_quaternion_init_vector(struct ao_quaternion *r, float x, float y, float z) { r->r = 0; r->x = x; r->y = y; r->z = z; } static inline void ao_quaternion_init_rotation(struct ao_quaternion *r, float x, float y, float z, float s, float c) { r->r = c; r->x = s * x; r->y = s * y; r->z = s * z; } static inline void ao_quaternion_init_zero_rotation(struct ao_quaternion *r) { r->r = 1; r->x = r->y = r->z = 0; } /* * The sincosf from newlib just calls sinf and cosf. This is a bit * faster, if slightly less precise */ static inline void ao_sincosf(float a, float *s, float *c) { float _s = sinf(a); *s = _s; *c = sqrtf(1 - _s*_s); } /* * Initialize a quaternion from 1/2 euler rotation angles (in radians). * * Yes, it would be nicer if there were a faster way, but because we * sample the gyros at only 100Hz, we end up getting angles too large * to take advantage of sin(x) ≃ x. * * We might be able to use just a couple of elements of the sin taylor * series though, instead of the whole sin function? */ static inline void ao_quaternion_init_half_euler(struct ao_quaternion *r, float x, float y, float z) { float s_x, c_x; float s_y, c_y; float s_z, c_z; ao_sincosf(x, &s_x, &c_x); ao_sincosf(y, &s_y, &c_y); ao_sincosf(z, &s_z, &c_z); r->r = c_x * c_y * c_z + s_x * s_y * s_z; r->x = s_x * c_y * c_z - c_x * s_y * s_z; r->y = c_x * s_y * c_z + s_x * c_y * s_z; r->z = c_x * c_y * s_z - s_x * s_y * c_z; } #endif /* _AO_QUATERNION_H_ */