/* * Copyright © 2012 Keith Packard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #ifndef _AO_DATA_H_ #define _AO_DATA_H_ #define GRAVITY 9.80665 #if HAS_ADC #define AO_DATA_ADC (1 << 0) #else #define AO_DATA_ADC 0 #endif #if HAS_MS5607 #include #define AO_DATA_MS5607 (1 << 1) #else #define AO_DATA_MS5607 0 #endif #if HAS_MPU6000 #include #define AO_DATA_MPU6000 (1 << 2) #else #define AO_DATA_MPU6000 0 #endif #if HAS_MPU9250 #include #define AO_DATA_MPU9250 (1 << 2) #else #define AO_DATA_MPU9250 0 #endif #if HAS_HMC5883 #include #define AO_DATA_HMC5883 (1 << 3) #else #define AO_DATA_HMC5883 0 #endif #if HAS_MMA655X #include #define AO_DATA_MMA655X (1 << 4) #else #define AO_DATA_MMA655X 0 #endif #if HAS_ADXL375 #include #define AO_DATA_ADXL375 (1 << 4) #else #define AO_DATA_ADXL375 0 #endif #if HAS_MAX6691 #include #define AO_DATA_MAX6691 (1 << 4) #else #define AO_DATA_MAX6691 0 #endif #if HAS_BMX160 #include #define AO_DATA_BMX160 (1 << 2) #else #define AO_DATA_BMX160 0 #endif #ifndef HAS_SENSOR_ERRORS #if HAS_IMU || HAS_MMA655X || HAS_MS5607 || HAS_MS5611 #define HAS_SENSOR_ERRORS 1 #endif #endif #if HAS_SENSOR_ERRORS extern uint8_t ao_sensor_errors; #endif #ifdef AO_DATA_RING #define AO_DATA_ALL (AO_DATA_ADC|AO_DATA_MS5607|AO_DATA_MPU6000|AO_DATA_HMC5883|AO_DATA_MMA655X|AO_DATA_MPU9250|AO_DATA_ADXL375|AO_DATA_BMX160) struct ao_data { uint16_t tick; #if HAS_ADC struct ao_adc adc; #endif #if HAS_MS5607 struct ao_ms5607_sample ms5607_raw; struct ao_ms5607_value ms5607_cooked; #endif #if HAS_MPU6000 struct ao_mpu6000_sample mpu6000; #if !HAS_MMA655X int16_t z_accel; #endif #endif #if HAS_MPU9250 struct ao_mpu9250_sample mpu9250; #endif #if HAS_HMC5883 struct ao_hmc5883_sample hmc5883; #endif #if HAS_MMA655X uint16_t mma655x; #endif #if HAS_ADXL375 struct ao_adxl375_sample adxl375; #endif #if HAS_MAX6691 struct ao_max6691_sample max6691; #endif #if HAS_ADS131A0X struct ao_ads131a0x_sample ads131a0x; #endif #if HAS_BMX160 struct ao_bmx160_sample bmx160; #endif }; #define ao_data_ring_next(n) (((n) + 1) & (AO_DATA_RING - 1)) #define ao_data_ring_prev(n) (((n) - 1) & (AO_DATA_RING - 1)) /* Get a copy of the last complete sample set */ void ao_data_get(struct ao_data *packet); extern volatile struct ao_data ao_data_ring[AO_DATA_RING]; extern volatile uint8_t ao_data_head; extern volatile uint8_t ao_data_present; extern volatile uint8_t ao_data_count; /* * Mark a section of data as ready, check for data complete */ #define AO_DATA_PRESENT(bit) (ao_data_present |= (bit)) /* * Mark sensor failed, and unblock the sample collection code by * marking the data as present */ #define AO_SENSOR_ERROR(bit) (ao_data_present |= (ao_sensor_errors |= (bit))) /* * Wait until it is time to write a sensor sample; this is * signaled by the timer tick */ #define AO_DATA_WAIT() ao_sleep((void *) &ao_data_count) #endif /* AO_DATA_RING */ #if !HAS_BARO && HAS_MS5607 /* Either an MS5607 or an MS5611 hooked to a SPI port */ #define HAS_BARO 1 typedef int32_t pres_t; #define AO_ALT_TYPE int32_t typedef AO_ALT_TYPE alt_t; #define ao_data_pres_cook(packet) ao_ms5607_convert(&packet->ms5607_raw, &packet->ms5607_cooked) #define ao_data_pres(packet) ((packet)->ms5607_cooked.pres) #define ao_data_temp(packet) ((packet)->ms5607_cooked.temp) #define pres_to_altitude(p) ao_pa_to_altitude(p) #endif #if !HAS_BARO && HAS_ADC #define HAS_BARO 1 typedef int16_t pres_t; typedef int16_t alt_t; #define ao_data_pres(packet) ((packet)->adc.pres) #define ao_data_temp(packet) ((packet)->adc.temp) #define pres_to_altitude(p) ao_pres_to_altitude(p) #define ao_data_pres_cook(p) #endif /* * Need a few macros to pull data from the sensors: * * ao_data_accel_sample - pull raw sensor and convert to normalized values * ao_data_accel - pull normalized value (lives in the same memory) * ao_data_set_accel - store normalized value back in the sensor location * ao_data_accel_invert - flip rocket ends for positive acceleration */ #if HAS_ACCEL /* This section is for an analog accelerometer hooked to one of the ADC pins. As * those are 5V parts, this also requires that the 5V supply be hooked to to anothe ADC * pin so that the both can be measured to correct for changes between the 3.3V and 5V rails */ typedef int16_t accel_t; #define ao_data_accel(packet) ((packet)->adc.accel) #define ao_data_set_accel(packet, a) ((packet)->adc.accel = (a)) #define ao_data_accel_invert(a) (0x7fff -(a)) /* * Ok, the math here is a bit tricky. * * ao_sample_accel: ADC output for acceleration * ao_accel_ref: ADC output for the 5V reference. * ao_cook_accel: Corrected acceleration value * Vcc: 3.3V supply to the CC1111 * Vac: 5V supply to the accelerometer * accel: input voltage to accelerometer ADC pin * ref: input voltage to 5V reference ADC pin * * * Measured acceleration is ratiometric to Vcc: * * ao_sample_accel accel * ------------ = ----- * 32767 Vcc * * Measured 5v reference is also ratiometric to Vcc: * * ao_accel_ref ref * ------------ = ----- * 32767 Vcc * * * ao_accel_ref = 32767 * (ref / Vcc) * * Acceleration is measured ratiometric to the 5V supply, * so what we want is: * * ao_cook_accel accel * ------------- = ----- * 32767 ref * * * accel Vcc * = ----- * --- * Vcc ref * * ao_sample_accel 32767 * = ------------ * ------------ * 32767 ao_accel_ref * * Multiply through by 32767: * * ao_sample_accel * 32767 * ao_cook_accel = -------------------- * ao_accel_ref * * Now, the tricky part. Getting this to compile efficiently * and keeping all of the values in-range. * * First off, we need to use a shift of 16 instead of * 32767 as SDCC * does the obvious optimizations for byte-granularity shifts: * * ao_cook_accel = (ao_sample_accel << 16) / ao_accel_ref * * Next, lets check our input ranges: * * 0 <= ao_sample_accel <= 0x7fff (singled ended ADC conversion) * 0x7000 <= ao_accel_ref <= 0x7fff (the 5V ref value is close to 0x7fff) * * Plugging in our input ranges, we get an output range of 0 - 0x12490, * which is 17 bits. That won't work. If we take the accel ref and shift * by a bit, we'll change its range: * * 0xe000 <= ao_accel_ref<<1 <= 0xfffe * * ao_cook_accel = (ao_sample_accel << 16) / (ao_accel_ref << 1) * * Now the output range is 0 - 0x9248, which nicely fits in 16 bits. It * is, however, one bit too large for our signed computations. So, we * take the result and shift that by a bit: * * ao_cook_accel = ((ao_sample_accel << 16) / (ao_accel_ref << 1)) >> 1 * * This finally creates an output range of 0 - 0x4924. As the ADC only * provides 11 bits of data, we haven't actually lost any precision, * just dropped a bit of noise off the low end. */ #if HAS_ACCEL_REF #define ao_data_accel_cook(packet) \ ((uint16_t) ((((uint32_t) (packet)->adc.accel << 16) / ((packet)->adc.accel_ref << 1))) >> 1) #else #define ao_data_accel_cook(packet) ((packet)->adc.accel) #endif /* HAS_ACCEL_REF */ #endif /* HAS_ACCEL */ #if !HAS_ACCEL && HAS_MMA655X #define HAS_ACCEL 1 typedef int16_t accel_t; /* MMA655X is hooked up so that positive values represent negative acceleration */ #define AO_ACCEL_INVERT 4095 #ifndef AO_MMA655X_INVERT #error AO_MMA655X_INVERT not defined #endif #define ao_data_accel(packet) ((packet)->mma655x) #if AO_MMA655X_INVERT #define ao_data_accel_cook(packet) (AO_ACCEL_INVERT - (packet)->mma655x) #else #define ao_data_accel_cook(packet) ((packet)->mma655x) #endif #define ao_data_set_accel(packet, accel) ((packet)->mma655x = (accel)) #define ao_data_accel_invert(accel) (AO_ACCEL_INVERT - (accel)) #endif #if !HAS_ACCEL && HAS_ADXL375 #define HAS_ACCEL 1 typedef int16_t accel_t; #ifndef AO_ADXL375_INVERT #error AO_ADXL375_INVERT not defined #endif #define ao_data_accel(packet) ((packet)->adxl375.AO_ADXL375_AXIS) #if AO_ADXL375_INVERT #define ao_data_accel_cook(packet) (-ao_data_accel(packet)) #else #define ao_data_accel_cook(packet) ao_data_accel(packet) #endif #define ao_data_set_accel(packet, accel) (ao_data_accel(packet) = (accel)) #define ao_data_accel_invert(accel) (-(accel)) #endif /* HAS_ADXL375 */ #if !HAS_ACCEL && HAS_MPU6000 #define HAS_ACCEL 1 typedef int16_t accel_t; /* MPU6000 is hooked up so that positive y is positive acceleration */ #define ao_data_accel(packet) ((packet)->z_accel) #define ao_data_accel_cook(packet) (-(packet)->mpu6000.accel_y) #define ao_data_set_accel(packet, accel) ((packet)->z_accel = (accel)) #define ao_data_accel_invert(a) (-(a)) #endif #if !HAS_GYRO && HAS_MPU6000 #define HAS_GYRO 1 typedef int16_t gyro_t; /* in raw sample units */ typedef int16_t angle_t; /* in degrees */ /* Y axis is aligned with the direction of motion (along) */ /* X axis is aligned in the other board axis (across) */ /* Z axis is aligned perpendicular to the board (through) */ #define ao_data_along(packet) ((packet)->mpu6000.accel_y) #define ao_data_across(packet) ((packet)->mpu6000.accel_x) #define ao_data_through(packet) ((packet)->mpu6000.accel_z) #define ao_data_roll(packet) ((packet)->mpu6000.gyro_y) #define ao_data_pitch(packet) ((packet)->mpu6000.gyro_x) #define ao_data_yaw(packet) ((packet)->mpu6000.gyro_z) static inline float ao_convert_gyro(float sensor) { return ao_mpu6000_gyro(sensor); } static inline float ao_convert_accel(int16_t sensor) { return ao_mpu6000_accel(sensor); } #endif #if !HAS_GYRO && HAS_MPU9250 #define HAS_GYRO 1 typedef int16_t gyro_t; /* in raw sample units */ typedef int16_t angle_t; /* in degrees */ /* Y axis is aligned with the direction of motion (along) */ /* X axis is aligned in the other board axis (across) */ /* Z axis is aligned perpendicular to the board (through) */ #ifndef ao_data_along #define ao_data_along(packet) ((packet)->mpu9250.accel_y) #define ao_data_across(packet) ((packet)->mpu9250.accel_x) #define ao_data_through(packet) ((packet)->mpu9250.accel_z) #define ao_data_roll(packet) ((packet)->mpu9250.gyro_y) #define ao_data_pitch(packet) ((packet)->mpu9250.gyro_x) #define ao_data_yaw(packet) ((packet)->mpu9250.gyro_z) #endif static inline float ao_convert_gyro(float sensor) { return ao_mpu9250_gyro(sensor); } static inline float ao_convert_accel(int16_t sensor) { return ao_mpu9250_accel(sensor); } #endif #if !HAS_GYRO && HAS_BMX160 #define HAS_GYRO 1 typedef int16_t gyro_t; /* in raw sample units */ typedef int16_t angle_t; /* in degrees */ /* Y axis is aligned with the direction of motion (along) */ /* X axis is aligned in the other board axis (across) */ /* Z axis is aligned perpendicular to the board (through) */ static inline float ao_convert_gyro(float sensor) { return ao_bmx160_gyro(sensor); } static inline float ao_convert_accel(int16_t sensor) { return ao_bmx160_accel(sensor); } #endif #if !HAS_MAG && HAS_HMC5883 #define HAS_MAG 1 typedef int16_t ao_mag_t; /* in raw sample units */ #define ao_data_mag_along(packet) ((packet)->hmc5883.x) #define ao_data_mag_across(packet) ((packet)->hmc5883.y) #define ao_data_mag_through(packet) ((packet)->hmc5883.z) #endif #if !HAS_MAG && HAS_MPU9250 #define HAS_MAG 1 typedef int16_t ao_mag_t; /* in raw sample units */ /* Note that this order is different from the accel and gyro. For some * reason, the mag sensor axes aren't the same as the other two * sensors. Also, the Z axis is flipped in sign. */ #ifndef ao_data_mag_along #define ao_data_mag_along(packet) ((packet)->mpu9250.mag_x) #define ao_data_mag_across(packet) ((packet)->mpu9250.mag_y) #define ao_data_mag_through(packet) ((packet)->mpu9250.mag_z) #endif #endif #ifdef AO_DATA_RING static inline void ao_data_fill(int head) { if (ao_data_present == AO_DATA_ALL) { #if HAS_MS5607 ao_data_ring[head].ms5607_raw = ao_ms5607_current; #endif #if HAS_MMA655X ao_data_ring[head].mma655x = ao_mma655x_current; #endif #if HAS_HMC5883 ao_data_ring[head].hmc5883 = ao_hmc5883_current; #endif #if HAS_MPU6000 ao_data_ring[head].mpu6000 = ao_mpu6000_current; #endif #if HAS_MPU9250 ao_data_ring[head].mpu9250 = ao_mpu9250_current; #endif #if HAS_ADXL375 ao_data_ring[head].adxl375 = ao_adxl375_current; #endif #if HAS_MAX6691 ao_data_ring[head].max6691 = ao_max6691_current; #endif #if HAS_ADS131A0X ao_data_ring[head].ads131a0x = ao_ads131a0x_current; #endif ao_data_ring[head].tick = ao_tick_count; ao_data_head = ao_data_ring_next(head); ao_wakeup((void *) &ao_data_head); } } #endif #endif /* _AO_DATA_H_ */