/* * Copyright © 2013 Keith Packard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #ifndef AO_FAT_TEST #include "ao.h" #endif #include "ao_fat.h" #include "ao_bufio.h" /* Partition information, sector numbers */ static uint8_t partition_type; static uint32_t partition_start, partition_end; #define SECTOR_SIZE 512 #define SECTOR_MASK (SECTOR_SIZE - 1) #define SECTOR_SHIFT 9 #define DIRENT_SIZE 32 /* File system parameters */ static uint8_t sectors_per_cluster; static uint32_t bytes_per_cluster; static uint16_t reserved_sector_count; static uint8_t number_fat; static uint16_t root_entries; static uint16_t sectors_per_fat; static uint16_t number_cluster; static uint32_t fat_start; static uint32_t root_start; static uint32_t data_start; static uint16_t first_free_cluster; /* * Deal with LSB FAT data structures */ static uint32_t get_u32(uint8_t *base) { return ((uint32_t) base[0] | ((uint32_t) base[1] << 8) | ((uint32_t) base[2] << 16) | ((uint32_t) base[3] << 24)); } static void put_u32(uint8_t *base, uint32_t value) { base[0] = value; base[1] = value >> 8; base[2] = value >> 16; base[3] = value >> 24; } static uint16_t get_u16(uint8_t *base) { return ((uint16_t) base[0] | ((uint16_t) base[1] << 8)); } static void put_u16(uint8_t *base, uint16_t value) { base[0] = value; base[1] = value >> 8; } static uint8_t ao_fat_cluster_valid(uint16_t cluster) { return (2 <= cluster && cluster < number_cluster); } /* Start using a sector */ static uint8_t * ao_fat_sector_get(uint32_t sector) { sector += partition_start; if (sector >= partition_end) return NULL; return ao_bufio_get(sector); } /* Finish using a sector, 'w' is 1 if modified */ #define ao_fat_sector_put(b,w) ao_bufio_put(b,w) /* Start using a root directory entry */ static uint8_t * ao_fat_root_get(uint16_t e) { uint32_t byte = e * DIRENT_SIZE; uint32_t sector = byte >> SECTOR_SHIFT; uint16_t offset = byte & SECTOR_MASK; uint8_t *buf; buf = ao_fat_sector_get(root_start + sector); if (!buf) return NULL; return buf + offset; } /* Finish using a root directory entry, 'w' is 1 if modified */ static void ao_fat_root_put(uint8_t *root, uint16_t e, uint8_t write) { uint16_t offset = ((e * DIRENT_SIZE) & SECTOR_MASK); uint8_t *buf = root - offset; ao_fat_sector_put(buf, write); } /* Get the next cluster entry in the chain */ static uint16_t ao_fat_entry_read(uint16_t cluster) { uint32_t sector; uint16_t offset; uint8_t *buf; uint16_t ret; if (!ao_fat_cluster_valid(cluster)) return 0xfff7; // cluster -= 2; sector = cluster >> (SECTOR_SHIFT - 1); offset = (cluster << 1) & SECTOR_MASK; buf = ao_fat_sector_get(fat_start + sector); if (!buf) return 0; ret = get_u16(buf + offset); ao_fat_sector_put(buf, 0); return ret; } /* Replace the referenced cluster entry in the chain with * 'new_value'. Return the previous value. */ static uint16_t ao_fat_entry_replace(uint16_t cluster, uint16_t new_value) { uint32_t sector; uint16_t offset; uint8_t *buf; uint16_t ret; uint8_t other_fats; if (!ao_fat_cluster_valid(cluster)) return 0; // cluster -= 2; sector = cluster >> (SECTOR_SHIFT - 1); offset = (cluster << 1) & SECTOR_MASK; buf = ao_fat_sector_get(fat_start + sector); if (!buf) return 0; ret = get_u16(buf + offset); put_u16(buf + offset, new_value); ao_fat_sector_put(buf, 1); /* * Keep the other FATs in sync */ for (other_fats = 1; other_fats < number_fat; other_fats++) { buf = ao_fat_sector_get(fat_start + other_fats * sectors_per_fat + sector); if (buf) { put_u16(buf + offset, new_value); ao_fat_sector_put(buf, 1); } } return ret; } /* * Walk a cluster chain and mark * all of them as free */ static void ao_fat_free_cluster_chain(uint16_t cluster) { while (ao_fat_cluster_valid(cluster)) { if (cluster < first_free_cluster) first_free_cluster = cluster; cluster = ao_fat_entry_replace(cluster, 0x0000); } } /* * ao_fat_cluster_seek * * Walk a cluster chain the specified distance and return what we find * there. If distance is zero, return the provided cluster. */ static uint16_t ao_fat_cluster_seek(uint16_t cluster, uint16_t distance) { while (distance) { cluster = ao_fat_entry_read(cluster); if (!ao_fat_cluster_valid(cluster)) break; distance--; } return cluster; } /* * ao_fat_sector_seek * * The basic file system operation -- map a file sector number to a * partition sector number. Done by computing the cluster number and * then walking that many clusters from the first cluster, then * adding the sector offset from the start of the cluster. Returns * 0xffffffff if we walk off the end of the file or the cluster chain * is damaged somehow */ static uint32_t ao_fat_sector_seek(uint16_t cluster, uint32_t sector) { uint16_t distance; uint16_t offset; distance = sector / sectors_per_cluster; offset = sector % sectors_per_cluster; cluster = ao_fat_cluster_seek(cluster, distance); if (!ao_fat_cluster_valid(cluster)) return 0xffffffff; /* Compute the sector within the partition and return it */ return data_start + (uint32_t) (cluster-2) * sectors_per_cluster + offset; } /* * ao_fat_setup_partition * * Load the boot block and find the first partition */ static uint8_t ao_fat_setup_partition(void) { uint8_t *mbr; uint8_t *partition; uint32_t partition_size; mbr = ao_bufio_get(0); if (!mbr) return 0; /* Check the signature */ if (mbr[0x1fe] != 0x55 || mbr[0x1ff] != 0xaa) { printf ("Invalid MBR signature %02x %02x\n", mbr[0x1fe], mbr[0x1ff]); ao_bufio_put(mbr, 0); return 0; } /* Check to see if it's actually a boot block, in which * case it's presumably not a paritioned device */ if (mbr[0] == 0xeb) { partition_start = 0; partition_size = get_u16(mbr + 0x13); if (partition_size == 0) partition_size = get_u32(mbr + 0x20); } else { /* Just use the first partition */ partition = &mbr[0x1be]; partition_type = partition[4]; switch (partition_type) { case 4: /* FAT16 up to 32M */ case 6: /* FAT16 over 32M */ break; case 0x0b: /* FAT32 up to 2047GB */ case 0x0c: /* FAT32 LBA */ break; default: printf ("Invalid partition type %02x\n", partition_type); ao_bufio_put(mbr, 0); return 0; } partition_start = get_u32(partition+8); partition_size = get_u32(partition+12); if (partition_size == 0) { printf ("Zero-sized partition\n"); ao_bufio_put(mbr, 0); return 0; } } partition_end = partition_start + partition_size; printf ("Partition type %02x start %08x end %08x\n", partition_type, partition_start, partition_end); ao_bufio_put(mbr, 0); return 1; } static uint8_t ao_fat_setup_fs(void) { uint8_t *boot = ao_fat_sector_get(0); uint32_t data_sectors; if (!boot) return 0; /* Check the signature */ if (boot[0x1fe] != 0x55 || boot[0x1ff] != 0xaa) { printf ("Invalid BOOT signature %02x %02x\n", boot[0x1fe], boot[0x1ff]); ao_fat_sector_put(boot, 0); return 0; } /* Check the sector size */ if (get_u16(boot + 0xb) != SECTOR_SIZE) { printf ("Invalid sector size %d\n", get_u16(boot + 0xb)); ao_fat_sector_put(boot, 0); return 0; } sectors_per_cluster = boot[0xd]; bytes_per_cluster = sectors_per_cluster << SECTOR_SHIFT; reserved_sector_count = get_u16(boot+0xe); number_fat = boot[0x10]; root_entries = get_u16(boot + 0x11); sectors_per_fat = get_u16(boot+0x16); fat_start = reserved_sector_count;; root_start = fat_start + number_fat * sectors_per_fat; data_start = root_start + ((root_entries * DIRENT_SIZE + SECTOR_MASK) >> SECTOR_SHIFT); data_sectors = (partition_end - partition_start) - data_start; number_cluster = data_sectors / sectors_per_cluster; printf ("sectors per cluster %d\n", sectors_per_cluster); printf ("reserved sectors %d\n", reserved_sector_count); printf ("number of FATs %d\n", number_fat); printf ("root entries %d\n", root_entries); printf ("sectors per fat %d\n", sectors_per_fat); printf ("fat start %d\n", fat_start); printf ("root start %d\n", root_start); printf ("data start %d\n", data_start); ao_fat_sector_put(boot, 0); return 1; } static uint8_t ao_fat_setup(void) { if (!ao_fat_setup_partition()) return 0; check_bufio("partition setup"); if (!ao_fat_setup_fs()) return 0; check_bufio("fs setup"); return 1; } /* * Basic file operations */ static struct ao_fat_dirent ao_file_dirent; static uint32_t ao_file_offset; static uint8_t ao_file_opened; static uint32_t ao_fat_offset_to_sector(uint32_t offset) { if (offset > ao_file_dirent.size) return 0xffffffff; return ao_fat_sector_seek(ao_file_dirent.cluster, offset >> SECTOR_SHIFT); } /* * ao_fat_set_size * * Set the size of the current file, truncating or extending * the cluster chain as needed */ static int8_t ao_fat_set_size(uint32_t size) { uint16_t clear_cluster = 0; uint8_t *dent; uint16_t first_cluster; first_cluster = ao_file_dirent.cluster; if (size == ao_file_dirent.size) return AO_FAT_SUCCESS; if (size == 0) { clear_cluster = ao_file_dirent.cluster; first_cluster = 0; } else { uint16_t new_num; uint16_t old_num; new_num = (size + bytes_per_cluster - 1) / bytes_per_cluster; old_num = (ao_file_dirent.size + bytes_per_cluster - 1) / bytes_per_cluster; if (new_num < old_num) { uint16_t last_cluster; /* Go find the last cluster we want to preserve in the file */ last_cluster = ao_fat_cluster_seek(ao_file_dirent.cluster, new_num - 1); /* Rewrite that cluster entry with 0xffff to mark the end of the chain */ clear_cluster = ao_fat_entry_replace(last_cluster, 0xffff); } else if (new_num > old_num) { uint16_t need; uint16_t free; uint16_t last_cluster; uint16_t highest_allocated = 0; if (old_num) last_cluster = ao_fat_cluster_seek(ao_file_dirent.cluster, old_num - 1); else last_cluster = 0; if (first_free_cluster < 2 || number_cluster <= first_free_cluster) first_free_cluster = 2; /* See if there are enough free clusters in the file system */ need = new_num - old_num; #define loop_cluster for (free = first_free_cluster; need > 0;) #define next_cluster \ if (++free == number_cluster) \ free = 2; \ if (free == first_free_cluster) \ break; \ loop_cluster { if (!ao_fat_entry_read(free)) need--; next_cluster; } /* Still need some, tell the user that we've failed */ if (need) return -AO_FAT_ENOSPC; /* Now go allocate those clusters */ need = new_num - old_num; loop_cluster { if (!ao_fat_entry_read(free)) { if (free > highest_allocated) highest_allocated = free; if (last_cluster) ao_fat_entry_replace(last_cluster, free); else first_cluster = free; last_cluster = free; need--; } next_cluster; } first_free_cluster = highest_allocated + 1; if (first_free_cluster >= number_cluster) first_free_cluster = 2; /* Mark the new end of the chain */ ao_fat_entry_replace(last_cluster, 0xffff); } } /* Deallocate clusters off the end of the file */ if (ao_fat_cluster_valid(clear_cluster)) ao_fat_free_cluster_chain(clear_cluster); /* Update the directory entry */ dent = ao_fat_root_get(ao_file_dirent.entry); if (!dent) return -AO_FAT_EIO; put_u32(dent + 0x1c, size); put_u16(dent + 0x1a, first_cluster); ao_fat_root_put(dent, ao_file_dirent.entry, 1); ao_file_dirent.size = size; ao_file_dirent.cluster = first_cluster; return AO_FAT_SUCCESS; } /* * ao_fat_root_init * * Initialize a root directory entry */ void ao_fat_root_init(uint8_t *dent, char name[11], uint8_t attr) { memset(dent, '\0', 0x20); memmove(dent, name, 11); dent[0x0b] = 0x00; dent[0x0c] = 0x00; dent[0x0d] = 0x00; /* XXX fix time */ put_u16(dent + 0x0e, 0); /* XXX fix date */ put_u16(dent + 0x10, 0); /* XXX fix date */ put_u16(dent + 0x12, 0); /* XXX fix time */ put_u16(dent + 0x16, 0); /* XXX fix date */ put_u16(dent + 0x18, 0); /* cluster number */ /* Low cluster bytes */ put_u16(dent + 0x1a, 0); /* FAT32 high cluster bytes */ put_u16(dent + 0x14, 0); /* size */ put_u32(dent + 0x1c, 0); } static void ao_fat_dirent_init(uint8_t *dent, uint16_t entry, struct ao_fat_dirent *dirent) { memcpy(dirent->name, dent + 0x00, 11); dirent->attr = dent[0x0b]; dirent->size = get_u32(dent+0x1c); dirent->cluster = get_u16(dent+0x1a); dirent->entry = entry; } /* * Public API */ /* * ao_fat_open * * Open an existing file. */ int8_t ao_fat_open(char name[11], uint8_t mode) { uint16_t entry = 0; struct ao_fat_dirent dirent; if (ao_file_opened) return -AO_FAT_EMFILE; while (ao_fat_readdir(&entry, &dirent)) { if (!memcmp(name, dirent.name, 11)) { if (AO_FAT_IS_DIR(dirent.attr)) return -AO_FAT_EISDIR; if (!AO_FAT_IS_FILE(dirent.attr)) return -AO_FAT_EPERM; if (mode > AO_FAT_OPEN_READ && (dirent.attr & AO_FAT_FILE_READ_ONLY)) return -AO_FAT_EACCESS; ao_file_dirent = dirent; ao_file_offset = 0; ao_file_opened = 1; return AO_FAT_SUCCESS; } } return -AO_FAT_ENOENT; } /* * ao_fat_creat * * Open and truncate an existing file or * create a new file */ int8_t ao_fat_creat(char name[11]) { uint16_t entry; int8_t status; if (ao_file_opened) return -AO_FAT_EMFILE; status = ao_fat_open(name, AO_FAT_OPEN_WRITE); switch (status) { case -AO_FAT_SUCCESS: status = ao_fat_set_size(0); break; case -AO_FAT_ENOENT: for (entry = 0; entry < root_entries; entry++) { uint8_t *dent = ao_fat_root_get(entry); if (!dent) { status = -AO_FAT_EIO; ao_fat_root_put(dent, entry, 0); break; } if (dent[0] == AO_FAT_DENT_EMPTY || dent[0] == AO_FAT_DENT_END) { ao_fat_root_init(dent, name, AO_FAT_FILE_REGULAR); ao_fat_dirent_init(dent, entry, &ao_file_dirent); ao_fat_root_put(dent, entry, 1); ao_file_opened = 1; status = -AO_FAT_SUCCESS; break; } else { ao_fat_root_put(dent, entry, 0); } } if (entry == root_entries) status = -AO_FAT_ENOSPC; } return status; } /* * ao_fat_close * * Close the currently open file */ int8_t ao_fat_close(void) { if (!ao_file_opened) return -AO_FAT_EBADF; memset(&ao_file_dirent, '\0', sizeof (struct ao_fat_dirent)); ao_file_offset = 0; ao_file_opened = 0; ao_bufio_flush(); return AO_FAT_SUCCESS; } /* * ao_fat_read * * Read from the file */ int ao_fat_read(void *dst, int len) { uint8_t *dst_b = dst; uint32_t sector; uint16_t this_time; uint16_t offset; uint8_t *buf; int ret = 0; if (!ao_file_opened) return -AO_FAT_EBADF; if (ao_file_offset + len > ao_file_dirent.size) len = ao_file_dirent.size - ao_file_offset; if (len < 0) len = 0; while (len) { offset = ao_file_offset & SECTOR_MASK; if (offset + len < SECTOR_SIZE) this_time = len; else this_time = SECTOR_SIZE - offset; sector = ao_fat_offset_to_sector(ao_file_offset); if (sector == 0xffffffff) break; buf = ao_fat_sector_get(sector); if (!buf) { ret = -AO_FAT_EIO; break; } memcpy(dst_b, buf + offset, this_time); ao_fat_sector_put(buf, 0); ret += this_time; len -= this_time; dst_b += this_time; ao_file_offset += this_time; } return ret; } /* * ao_fat_write * * Write to the file, extended as necessary */ int ao_fat_write(void *src, int len) { uint8_t *src_b = src; uint32_t sector; uint16_t this_time; uint16_t offset; uint8_t *buf; int ret = 0; if (!ao_file_opened) return -AO_FAT_EBADF; if (ao_file_offset + len > ao_file_dirent.size) { ret = ao_fat_set_size(ao_file_offset + len); if (ret < 0) return ret; } while (len) { offset = ao_file_offset & SECTOR_MASK; if (offset + len < SECTOR_SIZE) this_time = len; else this_time = SECTOR_SIZE - offset; sector = ao_fat_offset_to_sector(ao_file_offset); if (sector == 0xffffffff) break; buf = ao_fat_sector_get(sector); if (!buf) { ret = -AO_FAT_EIO; break; } memcpy(buf + offset, src_b, this_time); ao_fat_sector_put(buf, 1); ret += this_time; len -= this_time; src_b += this_time; ao_file_offset += this_time; } return ret; } /* * ao_fat_seek * * Set the position for the next I/O operation * Note that this doesn't actually change the size * of the file if the requested position is beyond * the current file length, that would take a future * write */ int32_t ao_fat_seek(int32_t pos, uint8_t whence) { if (!ao_file_opened) return -AO_FAT_EBADF; switch (whence) { case AO_FAT_SEEK_SET: ao_file_offset = pos; break; case AO_FAT_SEEK_CUR: ao_file_offset += pos; break; case AO_FAT_SEEK_END: ao_file_offset = ao_file_dirent.size + pos; break; } return ao_file_offset; } /* * ao_fat_unlink * * Remove a file from the directory, marking * all clusters as free */ int8_t ao_fat_unlink(char name[11]) { uint16_t entry = 0; struct ao_fat_dirent dirent; while (ao_fat_readdir(&entry, &dirent)) { if (memcmp(name, dirent.name, 11) == 0) { uint8_t *next; uint8_t *ent; uint8_t delete; if (AO_FAT_IS_DIR(dirent.attr)) return -AO_FAT_EISDIR; if (!AO_FAT_IS_FILE(dirent.attr)) return -AO_FAT_EPERM; ao_fat_free_cluster_chain(dirent.cluster); next = ao_fat_root_get(dirent.entry + 1); if (next && next[0] != AO_FAT_DENT_END) delete = AO_FAT_DENT_EMPTY; else delete = AO_FAT_DENT_END; if (next) ao_fat_root_put(next, dirent.entry + 1, 0); ent = ao_fat_root_get(dirent.entry); if (ent) { memset(ent, '\0', DIRENT_SIZE); *ent = delete; ao_fat_root_put(ent, dirent.entry, 1); } ao_bufio_flush(); return AO_FAT_SUCCESS; } } return -AO_FAT_ENOENT; } int8_t ao_fat_rename(char old[11], char new[11]) { return -AO_FAT_EIO; } int8_t ao_fat_readdir(uint16_t *entry, struct ao_fat_dirent *dirent) { uint8_t *dent; if (*entry >= root_entries) return 0; for (;;) { dent = ao_fat_root_get(*entry); if (dent[0] == AO_FAT_DENT_END) { ao_fat_root_put(dent, *entry, 0); return 0; } if (dent[0] != AO_FAT_DENT_EMPTY && (dent[0xb] & 0xf) != 0xf) { ao_fat_dirent_init(dent, *entry, dirent); ao_fat_root_put(dent, *entry, 0); (*entry)++; return 1; } ao_fat_root_put(dent, *entry, 0); (*entry)++; } } static void ao_fat_list(void) { uint16_t entry = 0; struct ao_fat_dirent dirent; while (ao_fat_readdir(&entry, &dirent)) { printf ("%-8.8s.%-3.3s %02x %04x %d\n", dirent.name, dirent.name + 8, dirent.attr, dirent.cluster, dirent.size); } } static void ao_fat_test(void) { ao_fat_setup(); ao_fat_list(); } static const struct ao_cmds ao_fat_cmds[] = { { ao_fat_test, "F\0Test FAT" }, { 0, NULL }, }; void ao_fat_init(void) { ao_bufio_init(); ao_cmd_register(&ao_fat_cmds[0]); }