/* * Copyright © 2009 Keith Packard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include "ao.h" #include "at45db161d.h" /* * Using SPI on USART 0, with P1_1 as the chip select */ #define FLASH_CS P1_1 #define FLASH_CS_INDEX 1 __xdata uint8_t ao_flash_dma_in_done; __xdata uint8_t ao_flash_dma_out_done; __xdata uint8_t ao_flash_mutex; uint8_t ao_flash_dma_out_id; uint8_t ao_flash_dma_in_id; static __xdata uint8_t ao_flash_const = 0xff; #define ao_flash_delay() do { \ _asm nop _endasm; \ _asm nop _endasm; \ _asm nop _endasm; \ } while(0) void ao_flash_cs_low(void) { ao_flash_delay(); FLASH_CS = 0; ao_flash_delay(); } void ao_flash_cs_high(void) { ao_flash_delay(); FLASH_CS = 1; ao_flash_delay(); } /* Send bytes over SPI. * * This sets up two DMA engines, one writing the data and another reading * bytes coming back. We use the bytes coming back to tell when the transfer * is complete, as the transmit register is double buffered and hence signals * completion one byte before the transfer is actually complete */ static void ao_flash_send(void __xdata *block, uint16_t len) { ao_dma_set_transfer(ao_flash_dma_in_id, &U0DBUFXADDR, &ao_flash_const, len, DMA_CFG0_WORDSIZE_8 | DMA_CFG0_TMODE_SINGLE | DMA_CFG0_TRIGGER_URX0, DMA_CFG1_SRCINC_0 | DMA_CFG1_DESTINC_0 | DMA_CFG1_PRIORITY_NORMAL); ao_dma_set_transfer(ao_flash_dma_out_id, block, &U0DBUFXADDR, len, DMA_CFG0_WORDSIZE_8 | DMA_CFG0_TMODE_SINGLE | DMA_CFG0_TRIGGER_UTX0, DMA_CFG1_SRCINC_1 | DMA_CFG1_DESTINC_0 | DMA_CFG1_PRIORITY_NORMAL); ao_dma_start(ao_flash_dma_in_id); ao_dma_start(ao_flash_dma_out_id); ao_dma_trigger(ao_flash_dma_out_id); __critical while (!ao_flash_dma_in_done) ao_sleep(&ao_flash_dma_in_done); } /* Receive bytes over SPI. * * This sets up tow DMA engines, one reading the data and another * writing constant values to the SPI transmitter as that is what * clocks the data coming in. */ static void ao_flash_recv(void __xdata *block, uint16_t len) { ao_dma_set_transfer(ao_flash_dma_in_id, &U0DBUFXADDR, block, len, DMA_CFG0_WORDSIZE_8 | DMA_CFG0_TMODE_SINGLE | DMA_CFG0_TRIGGER_URX0, DMA_CFG1_SRCINC_0 | DMA_CFG1_DESTINC_1 | DMA_CFG1_PRIORITY_NORMAL); ao_dma_set_transfer(ao_flash_dma_out_id, &ao_flash_const, &U0DBUFXADDR, len, DMA_CFG0_WORDSIZE_8 | DMA_CFG0_TMODE_SINGLE | DMA_CFG0_TRIGGER_UTX0, DMA_CFG1_SRCINC_0 | DMA_CFG1_DESTINC_0 | DMA_CFG1_PRIORITY_NORMAL); ao_dma_start(ao_flash_dma_in_id); ao_dma_start(ao_flash_dma_out_id); ao_dma_trigger(ao_flash_dma_out_id); __critical while (!ao_flash_dma_in_done) ao_sleep(&ao_flash_dma_in_done); } struct ao_flash_instruction { uint8_t instruction; uint8_t address[3]; } __xdata ao_flash_instruction; static void ao_flash_set_pagesize_512(void) { ao_flash_cs_low(); ao_flash_instruction.instruction = FLASH_SET_CONFIG; ao_flash_instruction.address[0] = FLASH_SET_512_BYTE_0; ao_flash_instruction.address[1] = FLASH_SET_512_BYTE_1; ao_flash_instruction.address[2] = FLASH_SET_512_BYTE_2; ao_flash_send(&ao_flash_instruction, 4); ao_flash_cs_high(); } static uint8_t ao_flash_read_status(void) { ao_flash_cs_low(); ao_flash_instruction.instruction = FLASH_READ_STATUS; ao_flash_send(&ao_flash_instruction, 1); ao_flash_recv(&ao_flash_instruction, 1); ao_flash_cs_high(); return ao_flash_instruction.instruction; } #define FLASH_BLOCK_NONE 0xffff static __xdata uint8_t ao_flash_data[FLASH_BLOCK_SIZE_MAX]; static __pdata uint16_t ao_flash_block = FLASH_BLOCK_NONE; static __pdata uint8_t ao_flash_block_dirty; static __pdata uint8_t ao_flash_write_pending; static __pdata uint8_t ao_flash_setup_done; static __data uint32_t ao_flash_device_size; static __data uint8_t ao_flash_block_shift; static __data uint16_t ao_flash_block_size; static void ao_flash_setup(void) { uint8_t status; if (ao_flash_setup_done) return; ao_mutex_get(&ao_flash_mutex); if (ao_flash_setup_done) { ao_mutex_put(&ao_flash_mutex); return; } /* On first use, check to see if the flash chip has * been programmed to use 512 byte pages. If not, do so. * And then, because the flash part must be power cycled * for that change to take effect, panic. */ status = ao_flash_read_status(); if (!(status & FLASH_STATUS_PAGESIZE_512)) { ao_flash_set_pagesize_512(); ao_panic(AO_PANIC_FLASH); } switch (status & 0x3c) { /* AT45DB321D */ case 0x34: ao_flash_block_shift = 9; ao_flash_device_size = ((uint32_t) 4 * (uint32_t) 1024 * (uint32_t) 1024); break; /* AT45DB161D */ case 0x2c: ao_flash_block_shift = 9; ao_flash_device_size = ((uint32_t) 2 * (uint32_t) 1024 * (uint32_t) 1024); break; /* AT45DB081D */ case 0x24: ao_flash_block_shift = 8; ao_flash_device_size = ((uint32_t) 1024 * (uint32_t) 1024); break; /* AT45DB041D */ case 0x1c: ao_flash_block_shift = 8; ao_flash_device_size = ((uint32_t) 512 * (uint32_t) 1024); break; /* AT45DB021D */ case 0x14: ao_flash_block_shift = 8; ao_flash_device_size = ((uint32_t) 256 * (uint32_t) 1024); break; /* AT45DB011D */ case 0x0c: ao_flash_block_shift = 8; ao_flash_device_size = ((uint32_t) 128 * (uint32_t) 1024); break; default: ao_panic(AO_PANIC_FLASH); } ao_flash_block_size = 1 << ao_flash_block_shift; ao_flash_setup_done = 1; ao_mutex_put(&ao_flash_mutex); } static void ao_flash_wait_write(void) { if (ao_flash_write_pending) { for (;;) { uint8_t status = ao_flash_read_status(); if ((status & FLASH_STATUS_RDY)) break; } ao_flash_write_pending = 0; } } /* Write the current block to the FLASHPROM */ static void ao_flash_write_block(void) { ao_flash_wait_write(); ao_flash_cs_low(); ao_flash_instruction.instruction = FLASH_WRITE; /* 13/14 block bits + 9/8 byte bits (always 0) */ ao_flash_instruction.address[0] = ao_flash_block >> (16 - ao_flash_block_shift); ao_flash_instruction.address[1] = ao_flash_block << (ao_flash_block_shift - 8); ao_flash_instruction.address[2] = 0; ao_flash_send(&ao_flash_instruction, 4); ao_flash_send(ao_flash_data, FLASH_BLOCK_SIZE); ao_flash_cs_high(); ao_flash_write_pending = 1; } /* Read the current block from the FLASHPROM */ static void ao_flash_read_block(void) { ao_flash_wait_write(); ao_flash_cs_low(); ao_flash_instruction.instruction = FLASH_READ; /* 13/14 block bits + 9/8 byte bits (always 0) */ ao_flash_instruction.address[0] = ao_flash_block >> (16 - ao_flash_block_shift); ao_flash_instruction.address[1] = ao_flash_block << (ao_flash_block_shift - 8); ao_flash_instruction.address[2] = 0; ao_flash_send(&ao_flash_instruction, 4); ao_flash_recv(ao_flash_data, FLASH_BLOCK_SIZE); ao_flash_cs_high(); } static void ao_flash_flush_internal(void) { if (ao_flash_block_dirty) { ao_flash_write_block(); ao_flash_block_dirty = 0; } } static void ao_flash_fill(uint16_t block) { if (block != ao_flash_block) { ao_flash_flush_internal(); ao_flash_block = block; ao_flash_read_block(); } } uint8_t ao_ee_write(uint32_t pos, uint8_t *buf, uint16_t len) __reentrant { uint16_t block; uint16_t this_len; uint16_t this_off; ao_flash_setup(); if (pos >= FLASH_DATA_SIZE || pos + len > FLASH_DATA_SIZE) return 0; while (len) { /* Compute portion of transfer within * a single block */ this_off = (uint16_t) pos & FLASH_BLOCK_MASK; this_len = FLASH_BLOCK_SIZE - this_off; block = (uint16_t) (pos >> FLASH_BLOCK_SHIFT); if (this_len > len) this_len = len; /* Transfer the data */ ao_mutex_get(&ao_flash_mutex); { if (this_len != FLASH_BLOCK_SIZE) ao_flash_fill(block); else { ao_flash_flush_internal(); ao_flash_block = block; } memcpy(ao_flash_data + this_off, buf, this_len); ao_flash_block_dirty = 1; } ao_mutex_put(&ao_flash_mutex); /* See how much is left */ buf += this_len; len -= this_len; pos += this_len; } return 1; } uint8_t ao_ee_read(uint32_t pos, uint8_t *buf, uint16_t len) __reentrant { uint16_t block; uint16_t this_len; uint16_t this_off; ao_flash_setup(); if (pos >= FLASH_DATA_SIZE || pos + len > FLASH_DATA_SIZE) return 0; while (len) { /* Compute portion of transfer within * a single block */ this_off = (uint16_t) pos & FLASH_BLOCK_MASK; this_len = FLASH_BLOCK_SIZE - this_off; block = (uint16_t) (pos >> FLASH_BLOCK_SHIFT); if (this_len > len) this_len = len; /* Transfer the data */ ao_mutex_get(&ao_flash_mutex); { ao_flash_fill(block); memcpy(buf, ao_flash_data + this_off, this_len); } ao_mutex_put(&ao_flash_mutex); /* See how much is left */ buf += this_len; len -= this_len; pos += this_len; } return 1; } void ao_ee_flush(void) __reentrant { ao_mutex_get(&ao_flash_mutex); { ao_flash_flush_internal(); } ao_mutex_put(&ao_flash_mutex); } /* * Read/write the config block, which is in * the last block of the flash */ uint8_t ao_ee_write_config(uint8_t *buf, uint16_t len) __reentrant { ao_flash_setup(); if (len > FLASH_BLOCK_SIZE) return 0; ao_mutex_get(&ao_flash_mutex); { ao_flash_fill(FLASH_CONFIG_BLOCK); memcpy(ao_flash_data, buf, len); ao_flash_block_dirty = 1; ao_flash_flush_internal(); } ao_mutex_put(&ao_flash_mutex); return 1; } uint8_t ao_ee_read_config(uint8_t *buf, uint16_t len) __reentrant { ao_flash_setup(); if (len > FLASH_BLOCK_SIZE) return 0; ao_mutex_get(&ao_flash_mutex); { ao_flash_fill(FLASH_CONFIG_BLOCK); memcpy(buf, ao_flash_data, len); } ao_mutex_put(&ao_flash_mutex); return 1; } static void flash_dump(void) __reentrant { uint8_t b; uint16_t block; uint8_t i; ao_cmd_hex(); block = ao_cmd_lex_i; if (ao_cmd_status != ao_cmd_success) return; i = 0; do { if ((i & 7) == 0) { if (i) putchar('\n'); ao_cmd_put16((uint16_t) i); } putchar(' '); ao_ee_read(((uint32_t) block << 8) | i, &b, 1); ao_cmd_put8(b); ++i; } while (i != 0); putchar('\n'); } static void flash_store(void) __reentrant { uint16_t block; uint8_t i; uint16_t len; uint8_t b; uint32_t addr; ao_cmd_hex(); block = ao_cmd_lex_i; ao_cmd_hex(); i = ao_cmd_lex_i; addr = ((uint32_t) block << 8) | i; ao_cmd_hex(); len = ao_cmd_lex_i; if (ao_cmd_status != ao_cmd_success) return; while (len--) { ao_cmd_hex(); if (ao_cmd_status != ao_cmd_success) return; b = ao_cmd_lex_i; ao_ee_write(addr, &b, 1); addr++; } ao_ee_flush(); } void ao_ee_dump_config(void) __reentrant { uint16_t i; printf("Configuration block %d\n", FLASH_CONFIG_BLOCK); ao_mutex_get(&ao_flash_mutex); { ao_flash_flush_internal(); ao_flash_block = FLASH_BLOCK_NONE; ao_flash_fill(FLASH_CONFIG_BLOCK); i = 0; do { if ((i & 7) == 0) { if (i) putchar('\n'); ao_cmd_put16((uint16_t) i); } putchar(' '); ao_cmd_put8(ao_flash_data[i]); ++i; } while (i < sizeof (ao_config)); } ao_mutex_put(&ao_flash_mutex); } static void flash_status(void) __reentrant { uint8_t status; ao_flash_setup(); ao_mutex_get(&ao_flash_mutex); { status = ao_flash_read_status(); printf ("Flash status: 0x%02x\n", status); printf ("Flash block shift: %d\n", FLASH_BLOCK_SHIFT); printf ("Flash block size: %d\n", FLASH_BLOCK_SIZE); printf ("Flash block mask: %d\n", FLASH_BLOCK_MASK); printf ("Flash device size: %ld\n", FLASH_DEVICE_SIZE); printf ("Flash data size: %ld\n", FLASH_DATA_SIZE); printf ("Flash config block: %d\n", FLASH_CONFIG_BLOCK); } ao_mutex_put(&ao_flash_mutex); ao_ee_dump_config(); } __code struct ao_cmds ao_flash_cmds[] = { { 'e', flash_dump, "e Dump a block of flash data" }, { 'w', flash_store, "w ... Write data to flash" }, { 'f', flash_status, "f Show flash status register" }, { 0, flash_store, NULL }, }; /* * To initialize the chip, set up the CS line and * the SPI interface */ void ao_ee_init(void) { /* set up CS */ FLASH_CS = 1; P1DIR |= (1 << FLASH_CS_INDEX); P1SEL &= ~(1 << FLASH_CS_INDEX); /* Set up the USART pin assignment */ PERCFG = (PERCFG & ~PERCFG_U0CFG_ALT_MASK) | PERCFG_U0CFG_ALT_2; /* Ensure that USART0 takes precidence over USART1 for pins that * they share */ P2SEL = (P2SEL & ~P2SEL_PRI3P1_MASK) | P2SEL_PRI3P1_USART0; /* Make the SPI pins be controlled by the USART peripheral */ P1SEL |= ((1 << 5) | (1 << 4) | (1 << 3)); /* Set up OUT DMA */ ao_flash_dma_out_id = ao_dma_alloc(&ao_flash_dma_out_done); /* Set up IN DMA */ ao_flash_dma_in_id = ao_dma_alloc(&ao_flash_dma_in_done); /* Set up the USART. * * SPI master mode */ U0CSR = (UxCSR_MODE_SPI | UxCSR_RE | UxCSR_MASTER); /* Set the baud rate and signal parameters * * The cc1111 is limited to a 24/8 MHz SPI clock, * while the at45db161d.h is limited to 20MHz. So, * use the 3MHz clock (BAUD_E 17, BAUD_M 0) */ U0BAUD = 0; U0GCR = (UxGCR_CPOL_NEGATIVE | UxGCR_CPHA_FIRST_EDGE | UxGCR_ORDER_MSB | (17 << UxGCR_BAUD_E_SHIFT)); ao_cmd_register(&ao_flash_cmds[0]); }