/* * Copyright © 2009 Keith Packard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #ifndef AO_FLIGHT_TEST #include "ao.h" #endif /* Main flight thread. */ __pdata enum ao_flight_state ao_flight_state; /* current flight state */ __pdata uint16_t ao_flight_tick; /* time of last data */ __pdata int16_t ao_flight_accel; /* filtered acceleration */ __pdata int16_t ao_flight_pres; /* filtered pressure */ __pdata int16_t ao_ground_pres; /* startup pressure */ __pdata int16_t ao_ground_accel; /* startup acceleration */ __pdata int16_t ao_min_pres; /* minimum recorded pressure */ __pdata uint16_t ao_launch_time; /* time of launch detect */ __pdata int16_t ao_main_pres; /* pressure to eject main */ /* * track min/max data over a long interval to detect * resting */ __pdata uint16_t ao_interval_end; __pdata int16_t ao_interval_cur_min_accel; __pdata int16_t ao_interval_cur_max_accel; __pdata int16_t ao_interval_cur_min_pres; __pdata int16_t ao_interval_cur_max_pres; __pdata int16_t ao_interval_min_accel; __pdata int16_t ao_interval_max_accel; __pdata int16_t ao_interval_min_pres; __pdata int16_t ao_interval_max_pres; __data uint8_t ao_flight_adc; __xdata int16_t ao_accel, ao_prev_accel, ao_pres; #define AO_INTERVAL_TICKS AO_SEC_TO_TICKS(5) /* Accelerometer calibration * * We're sampling the accelerometer through a resistor divider which * consists of 5k and 10k resistors. This multiplies the values by 2/3. * That goes into the cc1111 A/D converter, which is running at 11 bits * of precision with the bits in the MSB of the 16 bit value. Only positive * values are used, so values should range from 0-32752 for 0-3.3V. The * specs say we should see 40mV/g (uncalibrated), multiply by 2/3 for what * the A/D converter sees (26.67 mV/g). We should see 32752/3300 counts/mV, * for a final computation of: * * 26.67 mV/g * 32767/3300 counts/mV = 264.8 counts/g * * Zero g was measured at 16000 (we would expect 16384) */ #define ACCEL_G 265 #define ACCEL_ZERO_G 16000 #define ACCEL_NOSE_UP (ACCEL_ZERO_G - ACCEL_G * 2 /3) #define ACCEL_BOOST (ACCEL_NOSE_UP - ACCEL_G * 2) #define ACCEL_LAND (ACCEL_G / 10) /* * Barometer calibration * * We directly sample the barometer. The specs say: * * Pressure range: 15-115 kPa * Voltage at 115kPa: 2.82 * Output scale: 27mV/kPa * * If we want to detect launch with the barometer, we need * a large enough bump to not be fooled by noise. At typical * launch elevations (0-2000m), a 200Pa pressure change cooresponds * to about a 20m elevation change. This is 5.4mV, or about 3LSB. * As all of our calculations are done in 16 bits, we'll actually see a change * of 16 times this though * * 27 mV/kPa * 32767 / 3300 counts/mV = 268.1 counts/kPa */ #define BARO_kPa 268 #define BARO_LAUNCH (BARO_kPa / 5) /* .2kPa */ #define BARO_APOGEE (BARO_kPa / 10) /* .1kPa */ #define BARO_MAIN (BARO_kPa) /* 1kPa */ #define BARO_LAND (BARO_kPa / 20) /* .05kPa */ /* We also have a clock, which can be used to sanity check things in * case of other failures */ #define BOOST_TICKS_MAX AO_SEC_TO_TICKS(15) /* This value is scaled in a weird way. It's a running total of accelerometer * readings minus the ground accelerometer reading. That means it measures * velocity, and quite accurately too. As it gets updated 100 times a second, * it's scaled by 100 */ __data int32_t ao_flight_vel; /* convert m/s to velocity count */ #define VEL_MPS_TO_COUNT(mps) ((int32_t) ((int32_t) (mps) * (int32_t) 100 / (int32_t) ACCEL_G)) void ao_flight(void) { __pdata static uint8_t nsamples = 0; ao_flight_adc = ao_adc_head; ao_prev_accel = 0; ao_accel = 0; ao_pres = 0; for (;;) { ao_sleep(&ao_adc_ring); while (ao_flight_adc != ao_adc_head) { ao_accel = ao_adc_ring[ao_flight_adc].accel; ao_pres = ao_adc_ring[ao_flight_adc].pres; ao_flight_tick = ao_adc_ring[ao_flight_adc].tick; ao_flight_vel += (int32_t) (((ao_accel + ao_prev_accel) >> 4) - (ao_ground_accel << 1)); ao_prev_accel = ao_accel; ao_flight_adc = ao_adc_ring_next(ao_flight_adc); } ao_flight_accel -= ao_flight_accel >> 4; ao_flight_accel += ao_accel >> 4; ao_flight_pres -= ao_flight_pres >> 4; ao_flight_pres += ao_pres >> 4; if (ao_flight_pres < ao_min_pres) ao_min_pres = ao_flight_pres; if ((int16_t) (ao_flight_tick - ao_interval_end) >= 0) { ao_interval_max_pres = ao_interval_cur_max_pres; ao_interval_min_pres = ao_interval_cur_min_pres; ao_interval_max_accel = ao_interval_cur_max_accel; ao_interval_min_accel = ao_interval_cur_min_accel; ao_interval_end = ao_flight_tick + AO_INTERVAL_TICKS; } switch (ao_flight_state) { case ao_flight_startup: if (nsamples < 100) { ++nsamples; continue; } ao_ground_accel = ao_flight_accel; ao_ground_pres = ao_flight_pres; ao_min_pres = ao_flight_pres; ao_main_pres = ao_ground_pres - BARO_MAIN; ao_flight_vel = 0; ao_interval_end = ao_flight_tick; /* Go to launchpad state if the nose is pointing up */ if (ao_flight_accel < ACCEL_NOSE_UP) { ao_flight_state = ao_flight_launchpad; ao_wakeup(DATA_TO_XDATA(&ao_flight_state)); } else { ao_flight_state = ao_flight_idle; /* Turn on the Green LED in idle mode * This also happens to bring the USB up for the TI board */ ao_led_on(AO_LED_GREEN); ao_timer_set_adc_interval(100); ao_wakeup(DATA_TO_XDATA(&ao_flight_state)); } /* signal successful initialization by turning off the LED */ ao_led_off(AO_LED_RED); break; case ao_flight_launchpad: /* pad to boost: * * accelerometer: > 2g * barometer: > 20m vertical motion */ if (ao_flight_accel < ACCEL_BOOST || ao_flight_pres + BARO_LAUNCH < ao_ground_pres) { ao_flight_state = ao_flight_boost; ao_log_start(); ao_wakeup(DATA_TO_XDATA(&ao_flight_state)); break; } break; case ao_flight_boost: /* boost to coast: * * accelerometer: start to fall at > 1/4 G * time: boost for more than 15 seconds */ if (ao_flight_accel > ao_ground_accel + (ACCEL_G >> 2) || (int16_t) (ao_flight_tick - ao_launch_time) > BOOST_TICKS_MAX) { ao_flight_state = ao_flight_coast; ao_wakeup(DATA_TO_XDATA(&ao_flight_state)); break; } break; case ao_flight_coast: /* coast to apogee detect: * * accelerometer: integrated velocity < 200 m/s * barometer: fall at least 500m from max altitude */ if (ao_flight_vel < VEL_MPS_TO_COUNT(200) || ao_flight_pres - (5 * BARO_kPa) > ao_min_pres) { ao_flight_state = ao_flight_apogee; ao_wakeup(DATA_TO_XDATA(&ao_flight_state)); } break; case ao_flight_apogee: /* apogee to drogue deploy: * * accelerometer: integrated velocity < 10m/s * barometer: fall at least 10m */ if (ao_flight_vel < VEL_MPS_TO_COUNT(-10) || ao_flight_pres - BARO_APOGEE > ao_min_pres) { ao_ignite(ao_igniter_drogue); ao_flight_state = ao_flight_drogue; ao_wakeup(DATA_TO_XDATA(&ao_flight_state)); } break; case ao_flight_drogue: /* drogue to main deploy: * * accelerometer: abs(velocity) > 50m/s * barometer: reach main deploy altitude */ if (ao_flight_vel < VEL_MPS_TO_COUNT(-50) || ao_flight_vel > VEL_MPS_TO_COUNT(50) || ao_flight_pres >= ao_main_pres) { ao_ignite(ao_igniter_main); ao_flight_state = ao_flight_main; ao_wakeup(DATA_TO_XDATA(&ao_flight_state)); } /* fall through... */ case ao_flight_main: /* drogue/main to land: * * accelerometer: value stable * barometer: altitude stable */ if ((ao_interval_max_accel - ao_interval_min_accel) < ACCEL_LAND || (ao_interval_max_pres - ao_interval_min_pres) < BARO_LAND) { ao_flight_state = ao_flight_landed; ao_wakeup(DATA_TO_XDATA(&ao_flight_state)); } break; case ao_flight_landed: ao_log_stop(); break; } } } static __xdata struct ao_task flight_task; void ao_flight_init(void) { ao_flight_state = ao_flight_startup; ao_interval_min_accel = 0; ao_interval_max_accel = 0x7fff; ao_interval_min_pres = 0; ao_interval_max_pres = 0x7fff; ao_interval_end = AO_INTERVAL_TICKS; ao_add_task(&flight_task, ao_flight, "flight"); }