diff options
Diffstat (limited to 'src/kalman/kalman.5c')
| -rwxr-xr-x | src/kalman/kalman.5c | 491 | 
1 files changed, 491 insertions, 0 deletions
diff --git a/src/kalman/kalman.5c b/src/kalman/kalman.5c new file mode 100755 index 00000000..cfb7abea --- /dev/null +++ b/src/kalman/kalman.5c @@ -0,0 +1,491 @@ +#!/usr/bin/env nickle + +/* + * Copyright © 2011 Keith Packard <keithp@keithp.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; version 2 of the License. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. + */ + +autoimport ParseArgs; + +load "load_csv.5c" +import load_csv; + +load "matrix.5c" +import matrix; + +load "kalman_filter.5c" +import kalman; + +/* + * AltOS keeps speed and accel scaled + * by 4 bits to provide additional precision + */ +real	height_scale = 1.0; +real	accel_scale = 16.0; +real	speed_scale = 16.0; + +/* + * State: + * + * x[0] = height + * x[1] = velocity + * x[2] = acceleration + */ + +/* + * Measurement + * + * z[0] = height + * z[1] = acceleration + */ + +real default_σ_m = 5; +real default_σ_h = 20; +real default_σ_a = 2; + +parameters_t param_both(real t, real σ_m, real σ_h, real σ_a) { +	if (σ_m == 0) +		σ_m = default_σ_m; +	if (σ_h == 0) +		σ_h = default_σ_h; +	if (σ_a == 0) +		σ_a = default_σ_a; + +	σ_m = imprecise(σ_m) * accel_scale; +	σ_h = imprecise(σ_h) * height_scale; +	σ_a = imprecise(σ_a) * accel_scale; + +	t = imprecise(t); + +	return (parameters_t) { +/* + * Equation computing state k from state k-1 + * + * height = height- + velocity- * t + acceleration- * t² / 2 + * velocity = velocity- + acceleration- * t + * acceleration = acceleration- + */ +		.a = (real[3,3]) { +			{ 1, +			  t * height_scale / speed_scale , t**2/2 * height_scale / accel_scale }, +			{ 0, 1, t * speed_scale / accel_scale }, +			{ 0, 0, 1 } +		}, +/* + * Model error covariance. The only inaccuracy in the + * model is the assumption that acceleration is constant + */ +		.q = (real[3,3]) { +			{ 0, 0, 0 }, +			{ 0, 0, 0 }, +			{.0, 0, σ_m**2	}, +		}, +/* + * Measurement error covariance + * Our sensors are independent, so + * this matrix is zero off-diagonal + */ +		.r = (real[2,2]) { +			{ σ_h ** 2, 0 }, +			{ 0, σ_a ** 2 }, +		}, +/* + * Extract measurements from state, + * this just pulls out the height and acceleration + * values. + */ +		.h = (real[2,3]) { +			{ 1, 0, 0 }, +			{ 0, 0, 1 }, +		}, +	 }; +} + +parameters_t param_baro(real t, real σ_m, real σ_h) { +	if (σ_m == 0) +		σ_m = default_σ_m; +	if (σ_h == 0) +		σ_h = default_σ_h; + +	σ_m = imprecise(σ_m) * accel_scale; +	σ_h = imprecise(σ_h) * height_scale; + +	t = imprecise(t); +	return (parameters_t) { +/* + * Equation computing state k from state k-1 + * + * height = height- + velocity- * t + acceleration- * t² / 2 + * velocity = velocity- + acceleration- * t + * acceleration = acceleration- + */ +		.a = (real[3,3]) { +			{ 1, t * height_scale / speed_scale , t**2/2 * height_scale / accel_scale }, +			{ 0, 1, t * speed_scale / accel_scale }, +			{ 0, 0, 1 } +		}, +/* + * Model error covariance. The only inaccuracy in the + * model is the assumption that acceleration is constant + */ +		.q = (real[3,3]) { +			{ 0, 0, 0 }, +			{ 0, 0, 0 }, +			{.0, 0, σ_m**2	}, +		}, +/* + * Measurement error covariance + * Our sensors are independent, so + * this matrix is zero off-diagonal + */ +		.r = (real[1,1]) { +			{ σ_h ** 2 }, +		}, +/* + * Extract measurements from state, + * this just pulls out the height + * values. + */ +		.h = (real[1,3]) { +			{ 1, 0, 0 }, +		}, +	 }; +} + +parameters_t param_accel(real t, real σ_m, real σ_a) { +	if (σ_m == 0) +		σ_m = default_σ_m; +	if (σ_a == 0) +		σ_a = default_σ_a; + +	σ_m = imprecise(σ_m) * accel_scale; +	σ_a = imprecise(σ_a) * accel_scale; + +	t = imprecise(t); +	return (parameters_t) { +/* + * Equation computing state k from state k-1 + * + * height = height- + velocity- * t + acceleration- * t² / 2 + * velocity = velocity- + acceleration- * t + * acceleration = acceleration- + */ +		.a = (real[3,3]) { +			{ 1, t * height_scale / speed_scale , t**2/2 * height_scale / accel_scale }, +			{ 0, 1, t * speed_scale / accel_scale }, +			{ 0, 0, 1 } +		}, +/* + * Model error covariance. The only inaccuracy in the + * model is the assumption that acceleration is constant + */ +		.q = (real[3,3]) { +			{ 0, 0, 0 }, +			{ 0, 0, 0 }, +			{.0, 0, σ_m**2	}, +		}, +/* + * Measurement error covariance + * Our sensors are independent, so + * this matrix is zero off-diagonal + */ +		.r = (real[1,1]) { +			{ σ_a ** 2 }, +		}, +/* + * Extract measurements from state, + * this just pulls out the acceleration + * values. + */ +		.h = (real[1,3]) { +			{ 0, 0, 1 }, +		}, +	 }; +} + +parameters_t param_vel(real t) { +	static real σ_m = .1; +	static real σ_v = imprecise(10); + +	return (parameters_t) { +/* + * Equation computing state k from state k-1 + * + * height = height- + velocity- * t + acceleration- * t² / 2 + * velocity = velocity- + acceleration- * t + * acceleration = acceleration- + */ +		.a = (real[3,3]) { +			{ 1, imprecise(t), imprecise((t**2)/2) }, +			{ 0, 1, imprecise(t) }, +			{ 0, 0, 1 } +		}, +/* + * Model error covariance. The only inaccuracy in the + * model is the assumption that acceleration is constant + */ +		.q = (real[3,3]) { +			{ 0, 0, 0 }, +			{ 0, 0, 0 }, +			{.0, 0, σ_m**2	}, +		}, +/* + * Measurement error covariance + * Our sensors are independent, so + * this matrix is zero off-diagonal + */ +		.r = (real[1,1]) { +			{ σ_v ** 2 }, +		}, +/* + * Extract measurements from state, + * this just pulls out the velocity + * values. + */ +		.h = (real[1,3]) { +			{ 0, 1, 0 }, +		}, +	 }; +} + +real	max_baro_height = 18000; + +bool	just_kalman = true; +real	accel_input_scale = 1; + +void run_flight(string name, file f, bool summary) { +	state_t	current_both = { +		.x = (real[3]) { 0, 0, 0 }, +		.p = (real[3,3]) { { 0 ... } ... }, +	}; +	state_t current_accel = current_both; +	state_t current_baro = current_both; +	real	t; +	real	kalman_apogee_time = -1; +	real	kalman_apogee = 0; +	real	raw_apogee_time_first; +	real	raw_apogee_time_last; +	real	raw_apogee = 0; +	real	default_descent_rate = 20; +	real	speed = 0; +	real	prev_acceleration = 0; +	state_t	apogee_state; +	parameters_fast_t	fast_both; +	parameters_fast_t	fast_baro; +	parameters_fast_t	fast_accel; +	real			fast_delta_t = 0; +	bool			fast = true; + +	for (;;) { +		record_t	record = parse_record(f, accel_input_scale); +		if (record.done) +			break; +		if (is_uninit(&t)) +			t = record.time; +		real delta_t = record.time - t; +		if (delta_t <= 0) +			continue; +		t = record.time; +		if (record.height > raw_apogee) { +			raw_apogee_time_first = record.time; +			raw_apogee = record.height; +		} +		if (record.height == raw_apogee) +			raw_apogee_time_last = record.time; + +		real	acceleration = record.acceleration; +		real	height = record.height; + +		speed = (speed + (acceleration + prev_acceleration / 2) * delta_t); +		prev_acceleration = acceleration; + +		vec_t z_both = (real[2]) { record.height * height_scale,  record.acceleration * accel_scale }; +		vec_t z_accel = (real[1]) { record.acceleration * accel_scale }; +		vec_t z_baro = (real[1]) { record.height * height_scale }; + + +		if (fast) { +			if (delta_t != fast_delta_t) { +				fast_both = convert_to_fast(param_both(delta_t, 0, 0, 0)); +				fast_accel = convert_to_fast(param_accel(delta_t, 0, 0)); +				fast_baro = convert_to_fast(param_baro(delta_t, 0, 0)); +				fast_delta_t = delta_t; +			} + +			current_both.x = predict_fast(current_both.x, fast_both); +			current_accel.x = predict_fast(current_accel.x, fast_accel); +			current_baro.x = predict_fast(current_baro.x, fast_baro); + +			current_both.x = correct_fast(current_both.x, z_both, fast_both); +			current_accel.x = correct_fast(current_accel.x, z_accel, fast_accel); +			current_baro.x = correct_fast(current_baro.x, z_baro, fast_baro); +		} else { +			parameters_t p_both = param_both(delta_t, 0, 0, 0); +			parameters_t p_accel = param_accel(delta_t, 0, 0); +			parameters_t p_baro = param_baro(delta_t, 0, 0); + +			state_t pred_both = predict(current_both, p_both); +			state_t pred_accel = predict(current_accel, p_accel); +			state_t pred_baro = predict(current_baro, p_baro); + +			state_t next_both = correct(pred_both, z_both, p_both); +			state_t next_accel = correct(pred_accel, z_accel, p_accel); +			state_t next_baro = correct(pred_baro, z_baro, p_baro); +			current_both = next_both; +			current_accel = next_accel; +			current_baro = next_baro; +		} + +		printf ("%16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f %16.8f\n", +			record.time, +			record.height, speed, record.acceleration, +			current_both.x[0] / height_scale, current_both.x[1] / speed_scale, current_both.x[2] / accel_scale, +			current_accel.x[0] / height_scale, current_accel.x[1] / speed_scale, current_accel.x[2] / accel_scale, +			current_baro.x[0] / height_scale, current_baro.x[1] / speed_scale, current_baro.x[2] / accel_scale); +		if (kalman_apogee_time < 0) { +			if (current_both.x[1] < -1 && current_accel.x[1] < -1 && current_baro.x[1] < -1) { +				kalman_apogee = current_both.x[0]; +				kalman_apogee_time = record.time; +				break; +			} +		} +	} +	real raw_apogee_time = (raw_apogee_time_last + raw_apogee_time_first) / 2; +	if (summary && !just_kalman) { +		printf("%s: kalman (%8.2f m %6.2f s) raw (%8.2f m %6.2f s) error %6.2f s\n", +		       name, +		       kalman_apogee, kalman_apogee_time, +		       raw_apogee, raw_apogee_time, +		       kalman_apogee_time - raw_apogee_time); +	} +} + +void main() { +	bool	summary = false; +	int	user_argind = 1; +	real	time_step = 0.01; +	string	compute = "none"; +	string	prefix = "AO_K"; +	real	σ_m = 1; +	real	σ_h = 4; +	real	σ_a = 1; + +	ParseArgs::argdesc argd = { +		.args = { +			{ .var = { .arg_flag = &summary }, +			  .abbr = 's', +			  .name = "summary", +			  .desc = "Print a summary of the flight" }, +			{ .var = { .arg_real = &max_baro_height }, +			  .abbr = 'm', +			  .name = "maxbaro", +			  .expr_name = "height", +			  .desc = "Set maximum usable barometer height" }, +			{ .var = { .arg_real = &accel_input_scale, }, +			  .abbr = 'a', +			  .name = "accel", +			  .expr_name = "<accel-scale>", +			  .desc = "Set accelerometer scale factor" }, +			{ .var = { .arg_real = &time_step, }, +			  .abbr = 't', +			  .name = "time", +			  .expr_name = "<time-step>", +			  .desc = "Set time step for convergence" }, +			{ .var = { .arg_string = &prefix }, +			  .abbr = 'p', +			  .name = "prefix", +			  .expr_name = "<prefix>", +			  .desc = "Prefix for compute output" }, +			{ .var = { .arg_string = &compute }, +			  .abbr = 'c', +			  .name = "compute", +			  .expr_name = "{both,baro,accel}", +			  .desc = "Compute Kalman factor through convergence" }, +			{ .var = { .arg_real = &σ_m }, +			  .abbr = 'M', +			  .name = "model", +			  .expr_name = "<model-accel-error>", +			  .desc = "Model co-variance for acceleration" }, +			{ .var = { .arg_real = &σ_h }, +			  .abbr = 'H', +			  .name = "height", +			  .expr_name = "<measure-height-error>", +			  .desc = "Measure co-variance for height" }, +			{ .var = { .arg_real = &σ_a }, +			  .abbr = 'A', +			  .name = "accel", +			  .expr_name = "<measure-accel-error>", +			  .desc = "Measure co-variance for acceleration" }, +		}, + +		.unknown = &user_argind, +	}; + +	ParseArgs::parseargs(&argd, &argv); + +	if (compute != "none") { +		parameters_t	param; + +		printf ("/* Kalman matrix for %s\n", compute); +		printf (" *     step = %f\n", time_step); +		printf (" *     σ_m = %f\n", σ_m); +		switch (compute) { +		case "both": +			printf (" *     σ_h = %f\n", σ_h); +			printf (" *     σ_a = %f\n", σ_a); +			param = param_both(time_step, σ_m, σ_h, σ_a); +			break; +		case "accel": +			printf (" *     σ_a = %f\n", σ_a); +			param = param_accel(time_step, σ_m, σ_a); +			break; +		case "baro": +			printf (" *     σ_h = %f\n", σ_h); +			param = param_baro(time_step, σ_m, σ_h); +			break; +		} +		printf (" */\n\n"); +		mat_t k = converge(param); +		int[] d = dims(k); +		int time_inc = floor(1/time_step + 0.5); +		for (int i = 0; i < d[0]; i++) +			for (int j = 0; j < d[1]; j++) { +				string name; +				if (d[1] == 1) +					name = sprintf("%s_K%d_%d", prefix, i, time_inc); +				else +					name = sprintf("%s_K%d%d_%d", prefix, i, j, time_inc); +				printf ("#define %s to_fix32(%12.10f)\n", name, k[i,j]); +			} +		printf ("\n"); +		exit(0); +	} +	string[dim(argv) - user_argind] rest = { [i] = argv[i+user_argind] }; + +	#	height_scale = accel_scale = speed_scale = 1; + +	if (dim(rest) == 0) +		run_flight("<stdin>", stdin, summary); +	else { +		for (int i = 0; i < dim(rest); i++) { +			twixt(file f = File::open(rest[i], "r"); File::close(f)) { +				run_flight(rest[i], f, summary); +			} +		} +	} +} +main(); +#kalman(stdin); +#dump(stdin);  | 
