diff options
| author | Keith Packard <keithp@keithp.com> | 2013-02-04 10:51:49 -0800 | 
|---|---|---|
| committer | Keith Packard <keithp@keithp.com> | 2013-02-04 10:51:49 -0800 | 
| commit | c3024b759fcdf8b84a2139c1535c573a31eb5c95 (patch) | |
| tree | 41ff66b3d0f9b892799d8fea0a2f4f17f6c2ef33 /src | |
| parent | 0e982294961205bef525ecad7172a1f3ab66677f (diff) | |
altos: Add atmosphere.5c
Shared code for building pressure tables
Signed-off-by: Keith Packard <keithp@keithp.com>
Diffstat (limited to 'src')
| -rw-r--r-- | src/util/atmosphere.5c | 153 | 
1 files changed, 153 insertions, 0 deletions
| diff --git a/src/util/atmosphere.5c b/src/util/atmosphere.5c new file mode 100644 index 00000000..9b5107f0 --- /dev/null +++ b/src/util/atmosphere.5c @@ -0,0 +1,153 @@ +#!/usr/bin/nickle -f +/* + * Pressure Sensor Model, version 1.1 + * + * written by Holly Grimes + * + * Uses the International Standard Atmosphere as described in + *   "A Quick Derivation relating altitude to air pressure" (version 1.03) + *    from the Portland State Aerospace Society, except that the atmosphere + *    is divided into layers with each layer having a different lapse rate. + * + * Lapse rate data for each layer was obtained from Wikipedia on Sept. 1, 2007 + *    at site <http://en.wikipedia.org/wiki/International_Standard_Atmosphere + * + * Height measurements use the local tangent plane.  The postive z-direction is up. + * + * All measurements are given in SI units (Kelvin, Pascal, meter, meters/second^2). + *   The lapse rate is given in Kelvin/meter, the gas constant for air is given + *   in Joules/(kilogram-Kelvin). + */ + +const real GRAVITATIONAL_ACCELERATION = -9.80665; +const real AIR_GAS_CONSTANT = 287.053; +const int NUMBER_OF_LAYERS = 7; +const real MAXIMUM_ALTITUDE = 84852; +const real MINIMUM_PRESSURE = 0.3734; +const real LAYER0_BASE_TEMPERATURE = 288.15; +const real LAYER0_BASE_PRESSURE = 101325; + +/* lapse rate and base altitude for each layer in the atmosphere */ +const real[NUMBER_OF_LAYERS] lapse_rate = { +	-0.0065, 0.0, 0.001, 0.0028, 0.0, -0.0028, -0.002 +}; +const int[NUMBER_OF_LAYERS] base_altitude = { +	0, 11000, 20000, 32000, 47000, 51000, 71000 +}; + + +/* outputs atmospheric pressure associated with the given altitude. altitudes +   are measured with respect to the mean sea level */ +real altitude_to_pressure(real altitude) { + +   real base_temperature = LAYER0_BASE_TEMPERATURE; +   real base_pressure = LAYER0_BASE_PRESSURE; + +   real pressure; +   real base; /* base for function to determine pressure */ +   real exponent; /* exponent for function to determine pressure */ +   int layer_number; /* identifies layer in the atmosphere */ +   int delta_z; /* difference between two altitudes */ + +   if (altitude > MAXIMUM_ALTITUDE) /* FIX ME: use sensor data to improve model */ +      return 0; + +   /* calculate the base temperature and pressure for the atmospheric layer +      associated with the inputted altitude */ +   for(layer_number = 0; layer_number < NUMBER_OF_LAYERS - 1 && altitude > base_altitude[layer_number + 1]; layer_number++) { +      delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number]; +      if (lapse_rate[layer_number] == 0.0) { +         exponent = GRAVITATIONAL_ACCELERATION * delta_z +              / AIR_GAS_CONSTANT / base_temperature; +         base_pressure *= exp(exponent); +      } +      else { +         base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0; +         exponent = GRAVITATIONAL_ACCELERATION / +              (AIR_GAS_CONSTANT * lapse_rate[layer_number]); +         base_pressure *= pow(base, exponent); +      } +      base_temperature += delta_z * lapse_rate[layer_number]; +   } + +   /* calculate the pressure at the inputted altitude */ +   delta_z = altitude - base_altitude[layer_number]; +   if (lapse_rate[layer_number] == 0.0) { +      exponent = GRAVITATIONAL_ACCELERATION * delta_z +           / AIR_GAS_CONSTANT / base_temperature; +      pressure = base_pressure * exp(exponent); +   } +   else { +      base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0; +      exponent = GRAVITATIONAL_ACCELERATION / +           (AIR_GAS_CONSTANT * lapse_rate[layer_number]); +      pressure = base_pressure * pow(base, exponent); +   } + +   return pressure; +} + + +/* outputs the altitude associated with the given pressure. the altitude +   returned is measured with respect to the mean sea level */ +real pressure_to_altitude(real pressure) { + +   real next_base_temperature = LAYER0_BASE_TEMPERATURE; +   real next_base_pressure = LAYER0_BASE_PRESSURE; + +   real altitude; +   real base_pressure; +   real base_temperature; +   real base; /* base for function to determine base pressure of next layer */ +   real exponent; /* exponent for function to determine base pressure +                             of next layer */ +   real coefficient; +   int layer_number; /* identifies layer in the atmosphere */ +   int delta_z; /* difference between two altitudes */ + +   if (pressure < 0)  /* illegal pressure */ +      return -1; +   if (pressure < MINIMUM_PRESSURE) /* FIX ME: use sensor data to improve model */ +      return MAXIMUM_ALTITUDE; + +   /* calculate the base temperature and pressure for the atmospheric layer +      associated with the inputted pressure. */ +   layer_number = -1; +   do { +      layer_number++; +      base_pressure = next_base_pressure; +      base_temperature = next_base_temperature; +      delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number]; +      if (lapse_rate[layer_number] == 0.0) { +         exponent = GRAVITATIONAL_ACCELERATION * delta_z +              / AIR_GAS_CONSTANT / base_temperature; +         next_base_pressure *= exp(exponent); +      } +      else { +         base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0; +         exponent = GRAVITATIONAL_ACCELERATION / +              (AIR_GAS_CONSTANT * lapse_rate[layer_number]); +         next_base_pressure *= pow(base, exponent); +      } +      next_base_temperature += delta_z * lapse_rate[layer_number]; +   } +   while(layer_number < NUMBER_OF_LAYERS - 1 && pressure < next_base_pressure); + +   /* calculate the altitude associated with the inputted pressure */ +   if (lapse_rate[layer_number] == 0.0) { +      coefficient = (AIR_GAS_CONSTANT / GRAVITATIONAL_ACCELERATION) +                                                    * base_temperature; +      altitude = base_altitude[layer_number] +                    + coefficient * log(pressure / base_pressure); +   } +   else { +      base = pressure / base_pressure; +      exponent = AIR_GAS_CONSTANT * lapse_rate[layer_number] +                                       / GRAVITATIONAL_ACCELERATION; +      coefficient = base_temperature / lapse_rate[layer_number]; +      altitude = base_altitude[layer_number] +                      + coefficient * (pow(base, exponent) - 1); +   } + +   return altitude; +} | 
