diff options
| author | Keith Packard <keithp@keithp.com> | 2012-02-23 17:00:48 +1300 | 
|---|---|---|
| committer | Keith Packard <keithp@keithp.com> | 2012-06-02 19:39:55 -0700 | 
| commit | 69e6df07976a56b49e07c242cd6e5b2cbd2a578d (patch) | |
| tree | b2a5bebf3260959a2468ebcdf32f828fa16e035b /altoslib/AltosConvert.java | |
| parent | 9b659904109f992b8a3e61efb94e81cdb19af1c9 (diff) | |
Move altoslib sources to top dir
No sense having them live deep in the file system.
Signed-off-by: Keith Packard <keithp@keithp.com>
Diffstat (limited to 'altoslib/AltosConvert.java')
| -rw-r--r-- | altoslib/AltosConvert.java | 259 | 
1 files changed, 259 insertions, 0 deletions
| diff --git a/altoslib/AltosConvert.java b/altoslib/AltosConvert.java new file mode 100644 index 00000000..3527b575 --- /dev/null +++ b/altoslib/AltosConvert.java @@ -0,0 +1,259 @@ +/* + * Copyright © 2010 Keith Packard <keithp@keithp.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; version 2 of the License. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. + */ + +/* + * Sensor data conversion functions + */ +package org.altusmetrum.AltosLib; + +public class AltosConvert { +	/* +	 * Pressure Sensor Model, version 1.1 +	 * +	 * written by Holly Grimes +	 * +	 * Uses the International Standard Atmosphere as described in +	 *   "A Quick Derivation relating altitude to air pressure" (version 1.03) +	 *    from the Portland State Aerospace Society, except that the atmosphere +	 *    is divided into layers with each layer having a different lapse rate. +	 * +	 * Lapse rate data for each layer was obtained from Wikipedia on Sept. 1, 2007 +	 *    at site <http://en.wikipedia.org/wiki/International_Standard_Atmosphere +	 * +	 * Height measurements use the local tangent plane.  The postive z-direction is up. +	 * +	 * All measurements are given in SI units (Kelvin, Pascal, meter, meters/second^2). +	 *   The lapse rate is given in Kelvin/meter, the gas constant for air is given +	 *   in Joules/(kilogram-Kelvin). +	 */ + +	public static final double GRAVITATIONAL_ACCELERATION = -9.80665; +	public static final double AIR_GAS_CONSTANT		= 287.053; +	public static final double NUMBER_OF_LAYERS		= 7; +	public static final double MAXIMUM_ALTITUDE		= 84852.0; +	public static final double MINIMUM_PRESSURE		= 0.3734; +	public static final double LAYER0_BASE_TEMPERATURE	= 288.15; +	public static final double LAYER0_BASE_PRESSURE	= 101325; + +	/* lapse rate and base altitude for each layer in the atmosphere */ +	public static final double[] lapse_rate = { +		-0.0065, 0.0, 0.001, 0.0028, 0.0, -0.0028, -0.002 +	}; + +	public static final int[] base_altitude = { +		0, 11000, 20000, 32000, 47000, 51000, 71000 +	}; + +	/* outputs atmospheric pressure associated with the given altitude. +	 * altitudes are measured with respect to the mean sea level +	 */ +	public static double +	altitude_to_pressure(double altitude) +	{ +		double base_temperature = LAYER0_BASE_TEMPERATURE; +		double base_pressure = LAYER0_BASE_PRESSURE; + +		double pressure; +		double base; /* base for function to determine pressure */ +		double exponent; /* exponent for function to determine pressure */ +		int layer_number; /* identifies layer in the atmosphere */ +		double delta_z; /* difference between two altitudes */ + +		if (altitude > MAXIMUM_ALTITUDE) /* FIX ME: use sensor data to improve model */ +			return 0; + +		/* calculate the base temperature and pressure for the atmospheric layer +		   associated with the inputted altitude */ +		for(layer_number = 0; layer_number < NUMBER_OF_LAYERS - 1 && altitude > base_altitude[layer_number + 1]; layer_number++) { +			delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number]; +			if (lapse_rate[layer_number] == 0.0) { +				exponent = GRAVITATIONAL_ACCELERATION * delta_z +					/ AIR_GAS_CONSTANT / base_temperature; +				base_pressure *= Math.exp(exponent); +			} +			else { +				base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0; +				exponent = GRAVITATIONAL_ACCELERATION / +					(AIR_GAS_CONSTANT * lapse_rate[layer_number]); +				base_pressure *= Math.pow(base, exponent); +			} +			base_temperature += delta_z * lapse_rate[layer_number]; +		} + +		/* calculate the pressure at the inputted altitude */ +		delta_z = altitude - base_altitude[layer_number]; +		if (lapse_rate[layer_number] == 0.0) { +			exponent = GRAVITATIONAL_ACCELERATION * delta_z +				/ AIR_GAS_CONSTANT / base_temperature; +			pressure = base_pressure * Math.exp(exponent); +		} +		else { +			base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0; +			exponent = GRAVITATIONAL_ACCELERATION / +				(AIR_GAS_CONSTANT * lapse_rate[layer_number]); +			pressure = base_pressure * Math.pow(base, exponent); +		} + +		return pressure; +	} + + +/* outputs the altitude associated with the given pressure. the altitude +   returned is measured with respect to the mean sea level */ +	public static double +	pressure_to_altitude(double pressure) +	{ + +		double next_base_temperature = LAYER0_BASE_TEMPERATURE; +		double next_base_pressure = LAYER0_BASE_PRESSURE; + +		double altitude; +		double base_pressure; +		double base_temperature; +		double base; /* base for function to determine base pressure of next layer */ +		double exponent; /* exponent for function to determine base pressure +				    of next layer */ +		double coefficient; +		int layer_number; /* identifies layer in the atmosphere */ +		int delta_z; /* difference between two altitudes */ + +		if (pressure < 0)  /* illegal pressure */ +			return -1; +		if (pressure < MINIMUM_PRESSURE) /* FIX ME: use sensor data to improve model */ +			return MAXIMUM_ALTITUDE; + +		/* calculate the base temperature and pressure for the atmospheric layer +		   associated with the inputted pressure. */ +		layer_number = -1; +		do { +			layer_number++; +			base_pressure = next_base_pressure; +			base_temperature = next_base_temperature; +			delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number]; +			if (lapse_rate[layer_number] == 0.0) { +				exponent = GRAVITATIONAL_ACCELERATION * delta_z +					/ AIR_GAS_CONSTANT / base_temperature; +				next_base_pressure *= Math.exp(exponent); +			} +			else { +				base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0; +				exponent = GRAVITATIONAL_ACCELERATION / +					(AIR_GAS_CONSTANT * lapse_rate[layer_number]); +				next_base_pressure *= Math.pow(base, exponent); +			} +			next_base_temperature += delta_z * lapse_rate[layer_number]; +		} +		while(layer_number < NUMBER_OF_LAYERS - 1 && pressure < next_base_pressure); + +		/* calculate the altitude associated with the inputted pressure */ +		if (lapse_rate[layer_number] == 0.0) { +			coefficient = (AIR_GAS_CONSTANT / GRAVITATIONAL_ACCELERATION) +				* base_temperature; +			altitude = base_altitude[layer_number] +				+ coefficient * Math.log(pressure / base_pressure); +		} +		else { +			base = pressure / base_pressure; +			exponent = AIR_GAS_CONSTANT * lapse_rate[layer_number] +				/ GRAVITATIONAL_ACCELERATION; +			coefficient = base_temperature / lapse_rate[layer_number]; +			altitude = base_altitude[layer_number] +				+ coefficient * (Math.pow(base, exponent) - 1); +		} + +		return altitude; +	} + +	public static double +	cc_battery_to_voltage(double battery) +	{ +		return battery / 32767.0 * 5.0; +	} + +	public static double +	cc_ignitor_to_voltage(double ignite) +	{ +		return ignite / 32767 * 15.0; +	} + +	public static double radio_to_frequency(int freq, int setting, int cal, int channel) { +		double	f; + +		if (freq > 0) +			f = freq / 1000.0; +		else { +			if (setting <= 0) +				setting = cal; +			f = 434.550 * setting / cal; +			/* Round to nearest 50KHz */ +			f = Math.floor (20.0 * f + 0.5) / 20.0; +		} +		return f + channel * 0.100; +	} + +	public static int radio_frequency_to_setting(double frequency, int cal) { +		double	set = frequency / 434.550 * cal; + +		return (int) Math.floor (set + 0.5); +	} + +	public static int radio_frequency_to_channel(double frequency) { +		int	channel = (int) Math.floor ((frequency - 434.550) / 0.100 + 0.5); + +		if (channel < 0) +			channel = 0; +		if (channel > 9) +			channel = 9; +		return channel; +	} + +	public static double radio_channel_to_frequency(int channel) { +		return 434.550 + channel * 0.100; +	} + +	public static int[] ParseHex(String line) { +		String[] tokens = line.split("\\s+"); +		int[] array = new int[tokens.length]; + +		for (int i = 0; i < tokens.length; i++) +			try { +				array[i] = Integer.parseInt(tokens[i], 16); +			} catch (NumberFormatException ne) { +				return null; +			} +		return array; +	} + +	public static double meters_to_feet(double meters) { +		return meters * (100 / (2.54 * 12)); +	} + +	public static double meters_to_mach(double meters) { +		return meters / 343;		/* something close to mach at usual rocket sites */ +	} + +	public static double meters_to_g(double meters) { +		return meters / 9.80665; +	} + +	public static int checksum(int[] data, int start, int length) { +		int	csum = 0x5a; +		for (int i = 0; i < length; i++) +			csum += data[i + start]; +		return csum & 0xff; +	} +} | 
